Limitations of Disordered Carbons Obtained from Biomass as Anodes for Real Lithium-Ion Batteries

被引:97
作者
Caballero, Alvaro [1 ]
Hernan, Lourdes [1 ]
Morales, Julian [1 ]
机构
[1] Univ Cordoba, Dept Quim Inorgan & Ingn Quim, E-14071 Cordoba, Spain
关键词
batteries; biomass; carbon; electrochemistry; lithium; PERFORMANCE; CELLS; INSERTION; CRYSTALLINITY; PYROLYSIS; MECHANISM; LIMN2O4; SHELLS;
D O I
10.1002/cssc.201000398
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two disordered microporous carbons were obtained from two different types of biomass residues: olive and cherry stones. The former (OS) was activated physically under steam while the latter (CS) chemically with an aqueous solution of ZnCl(2). Their structural and textural properties were studied by X-ray diffraction, scanning electron microscopy, and N(2) adsorption/desorption. Although the samples possess similar textural properties (BET surface areas, micropore surfaces and volumes), the CS carbon is more disordered than the OS carbon. Their electrochemical response in half-cells (CS [OS]/Li) is good; the values are comparable to those obtained from mesocarbon microbeads commonly used in commercial lithium-ion batteries, which consist of highly graphitized carbon. However, cells featuring the OS or CS carbon as anode and LiMn(2)O(4) as cathode perform poorly. Electrochemical activation of the electrodes against lithium metal, a recommended procedure for boosting the electrochemical properties of real lithium-ion batteries, improves cell performance (particularly with OS) but is ultimately ineffective: the delivered average capacity of the activated cell made from OS was less than half its theoretical value. The high irreversible capacity, high polarization between the charge and discharge curves, combined with the presence of various functional groups and the high disorder of the studied carbons which may facilitate side reactions such as electrolyte decomposition, results in a degraded cell performance.
引用
收藏
页码:658 / 663
页数:6
相关论文
共 32 条
[1]   Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J].
Amatucci, G ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :K31-K46
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Improving the Performance of Biomass-Derived Carbons in Li-Ion Batteries by Controlling the Lithium Insertion Process [J].
Arrebola, J. C. ;
Caballero, A. ;
Hernan, L. ;
Morales, J. ;
Olivares-Martin, M. ;
Gomez-Serrano, V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A791-A797
[4]   Graphitized Carbons of Variable Morphology and Crystallinity: A Comparative Study of Their Performance in Lithium Cells [J].
Arrebola, J. C. ;
Caballero, A. ;
Hernan, L. ;
Morales, J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (12) :A986-A992
[5]   Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinet via polymer-assisted synthesis:: A method for improving its rate capability and performance in 5 V lithium batteries [J].
Arrebola, Jose C. ;
Caballero, Alvaro ;
Cruz, Manuel ;
Hernan, Lourdes ;
Morales, Julian ;
Castellon, Enrique Rodriguez .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (14) :1904-1912
[6]   An analysis of rechargeable lithium-ion batteries after prolonged cycling [J].
Aurbach, D ;
Markovsky, B ;
Rodkin, A ;
Cojocaru, M ;
Levi, E ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2002, 47 (12) :1899-1911
[7]   A disordered carbon as a novel anode material in lithium-ion cells [J].
Bonino, F ;
Brutti, S ;
Reale, P ;
Scrosati, B ;
Gherghel, L ;
Wu, J ;
Müllen, K .
ADVANCED MATERIALS, 2005, 17 (06) :743-+
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]   Nanocrystalline materials obtained by using a simple, rapid method for rechargeable lithium batteries [J].
Caballero, A ;
Cruz, M ;
Hernán, L ;
Melero, M ;
Morales, J ;
Castellón, ER .
JOURNAL OF POWER SOURCES, 2005, 150 :192-201
[10]   Capacity fade of Li1+xMn2-xO4-based lithium-ion cells [J].
Chen, ZH ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) :A316-A320