Arbitrarily accurate approximate inertial manifolds of fixed dimension

被引:4
作者
Robinson, JC
机构
[1] Dept. Appl. Math. and Theor. Phys., Cambridge CB3 9EW, Silver Street
关键词
D O I
10.1016/S0375-9601(97)00245-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By employing an embedding result due to Mane, and its recent strengthening due to Foias and Olson it is shown that a global attractor with finite fractal (box counting) dimension d lies within an arbitrarily small neighbourhood of a smooth graph over the space spanned by the first [[2d + 1]] Fourier-Galerkin modes. The proof is, however, nonconstructive. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:301 / 304
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1989, J. Dyn. Differ. Equations, V1, P245
[2]  
BRUNOVSKY P, 1990, J DYN DIFFER EQU, V2, P293
[3]   SMOOTHNESS OF INERTIAL MANIFOLDS [J].
CHOW, SN ;
LU, KN ;
SELL, GR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 169 (01) :283-312
[4]  
DEBUSSCHE A, 1994, J MATH PURE APPL, V73, P489
[5]  
Foias C, 1996, INDIANA U MATH J, V45, P603
[6]  
Foias C., 1988, Mathematical Modelling and Numerical Analysis, V22, P93
[7]  
FOIAS C, 1985, CR ACAD SCI I-MATH, V301, P139
[8]  
Foias G. R., 1989, J. Dyn. Differ. Equations, V1, P199, DOI [10.1007/BF01047831, DOI 10.1007/BF01047831]
[9]  
Hale J., 1988, Asymptotic Behavior of Dissipative Systems
[10]  
Henry D, 1981, GEOMETRIC THEORY SEM, P3, DOI DOI 10.1007/BFB0089647