Eigenvalues, invariant factors, highest weights, and Schubert calculus

被引:284
作者
Fulton, W [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
D O I
10.1090/S0273-0979-00-00865-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe recent work of Klyachko, Totaro, Knutson, and Tao that characterizes eigenvalues of sums of Hermitian matrices and decomposition of tensor products of representations of GL(n)(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.
引用
收藏
页码:209 / 249
页数:41
相关论文
共 67 条
[1]  
Agnihotri S, 1998, MATH RES LETT, V5, P817
[3]  
[Anonymous], 1954, American Journal of Mathematics, DOI DOI 10.2307/2372705
[4]  
[Anonymous], 1950, IZV AKAD NAUK SSSR M
[5]  
[Anonymous], CONT MATH
[6]   On the distribution of the length of the longest increasing subsequence of random permutations [J].
Baik, J ;
Deift, P ;
Johansson, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1119-1178
[7]  
BELKALE P, 1999, THESIS U CHICAGO
[8]  
BERENSTEIN A, IN PRESS J AM MATH S
[9]  
BEREZIN FA, 1962, AM MATH SOC TRANSL, V21, P193
[10]  
BIANE P, 1998040 MSRI