Eight-dimensional quantum Hall effect and "octonions"

被引:103
作者
Bernevig, BA [1 ]
Hu, JP
Toumbas, N
Zhang, SC
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
D O I
10.1103/PhysRevLett.91.236803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a generalization of the quantum Hall effect where particles move in an eight-dimensional space under an SO(8) gauge field. The underlying mathematics of this particle liquid is that of the last normed division algebra, the octonions. Two fundamentally different liquids with distinct configuration spaces can be constructed, depending on whether the particles carry spinor or vector SO(8) quantum numbers. One of the liquids lives on a 20-dimensional manifold with an internal component of SO(7) holonomy, whereas the second liquid lives on a 14-dimensional manifold with an internal component of G(2) holonomy.
引用
收藏
页数:4
相关论文
共 8 条
[1]  
ATIYAH M, 2003, ADV THEOR MATH PHYS, V6, P1
[2]  
BAEZ JC, MATHRA0105155
[3]  
BERNEVIG BA, IN PRESS
[4]   THE PARALLELIZING S7 TORSION IN GAUGED N=8 SUPERGRAVITY [J].
DEWIT, B ;
NICOLAI, H .
NUCLEAR PHYSICS B, 1984, 231 (03) :506-532
[5]   SOLUTIONS TO YANG-MILLS FIELD-EQUATIONS IN 8 DIMENSIONS AND THE LAST HOPF MAP [J].
GROSSMAN, B ;
KEPHART, TW ;
STASHEFF, JD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (04) :431-437
[6]   Higher-dimensional geometries from matrix brane constructions [J].
Ho, PM ;
Ramgoolam, S .
NUCLEAR PHYSICS B, 2002, 627 (1-2) :266-288
[8]   A four-dimensional generalization of the quantum Hall effect [J].
Zhang, SC ;
Hu, JP .
SCIENCE, 2001, 294 (5543) :823-828