Enhanced electrochemical performance of porous NiO-Ni nanocomposite anode for lithium ion batteries

被引:178
作者
Li, Xifei [1 ]
Dhanabalan, Abirami [1 ]
Wang, Chunlei [1 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
关键词
Porous; NiO-Ni; Nanocomposite; Anode; Lithium ion batteries; Cycle performance; Rate capability; NICKEL ACETATE TETRAHYDRATE; ELECTRODE MATERIALS; HIGH-CAPACITY; BINDER-FREE; NANOPARTICLES; DECOMPOSITION; REACTIVITY; INTERCALATION; COMPOSITE;
D O I
10.1016/j.jpowsour.2011.06.097
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nickel foam-supported porous NiO-Ni nanocomposite synthesized by electrostatic spray deposition (ESD) technique was investigated as anodes for lithium ion batteries. This anode was demonstrated to exhibit improved cycle performance as well as good rate capability. Ni particles in the composites provide a highly conductive medium for electron transfer during the conversion reaction of NiO with Li+ and facilitate a more complete decomposition of Li2O during charge with increased reversibility of conversion reaction. Moreover, the obtained porous structure is benefical to buffering the volume expansion/constriction during the cycling. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9625 / 9630
页数:6
相关论文
共 51 条
[1]   Electrical and optical properties of narrow-band materials [J].
Adler, David ;
Feinleib, Julius .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (08) :3112-3134
[2]   Porous Si anode materials for lithium rechargeable batteries [J].
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (20) :4009-4014
[3]   Thermal decomposition of nickel acetate tetrahydrate:: an integrated study by TGA, QMS and XPS techniques [J].
De Jesus, JC ;
González, I ;
Quevedo, A ;
Puerta, T .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2005, 228 (1-2) :283-291
[4]   Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor [J].
Dharmaraj, N ;
Prabu, P ;
Nagarajan, S ;
Kim, CH ;
Park, JH ;
Kim, HY .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 128 (1-3) :111-114
[5]   Recent development of carbon materials for Li ion batteries [J].
Endo, M ;
Kim, C ;
Nishimura, K ;
Fujino, T ;
Miyashita, K .
CARBON, 2000, 38 (02) :183-197
[6]   A KINETIC AND MECHANISTIC STUDY OF THE THERMAL-DECOMPOSITION OF NICKEL ACETATE [J].
GALWEY, AK ;
MCKEE, SG ;
MITCHELL, TRB ;
BROWN, ME ;
BEAN, AF .
REACTIVITY OF SOLIDS, 1988, 6 (2-3) :173-186
[7]   Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-lon batteries [J].
Gillot, F ;
Boyanov, S ;
Dupont, L ;
Doublet, ML ;
Morcrette, A ;
Monconduit, L ;
Tarascon, JM .
CHEMISTRY OF MATERIALS, 2005, 17 (25) :6327-6337
[8]   An update on the reactivity of nanoparticles Co-based compounds towards Li [J].
Grugeon, S ;
Laruelle, S ;
Dupont, L ;
Tarascon, JM .
SOLID STATE SCIENCES, 2003, 5 (06) :895-904
[9]   Particle size effects on the electrochemical performance of copper oxides toward lithium [J].
Grugeon, S ;
Laruelle, S ;
Herrera-Urbina, R ;
Dupont, L ;
Poizot, P ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A285-A292
[10]   Cr2O3-based anode materials for Li-ion batteries [J].
Hu, J ;
Li, H ;
Huang, XJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (01) :A66-A69