Large-n critical behavior of O(n) x O(m) spin models

被引:63
作者
Pelissetto, A [1 ]
Rossi, P
Vicari, E
机构
[1] Univ Rome 1, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Fis Nucl, I-00185 Rome, Italy
[3] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[4] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
关键词
critical phenomena; frustrated models; O(m) x O(n)-symmetric models; field theory; 1/n expansion; epsilon-expansion;
D O I
10.1016/S0550-3213(01)00223-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
lWe consider the Landau-Ginzburg-Wilson Hamiltonian with O(n) x O(m) symmetry and compute the critical exponents at all fixed points to O(n(-2)) and to O(epsilon (3)) in a epsilon = 4 - d expansion. We also consider the corresponding non-linear or-model and determine the fixed points and the critical exponents to O(<(<epsilon>)over tilde>(2)) in the <(<epsilon>)over tilde> = d - 2 expansion. Using these results, we draw quite general conclusions on the fixed-point structure of models with O(n) x O(m) symmetry for n large and all 2 less than or equal to d less than or equal to 4. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:605 / 634
页数:30
相关论文
共 44 条
[1]  
Aharony A., 1976, Phase Transitions and Critical Phenomena, V6, P357
[2]   CHIRAL TRANSITIONS IN 3-DIMENSIONAL MAGNETS AND HIGHER-ORDER EPSILON-EXPANSION [J].
ANTONENKO, SA ;
SOKOLOV, AI ;
VARNASHEV, KB .
PHYSICS LETTERS A, 1995, 208 (1-2) :161-164
[3]   PHASE-TRANSITIONS IN ANISOTROPIC SUPERCONDUCTING AND MAGNETIC SYSTEMS WITH VECTOR ORDER PARAMETERS - 3-LOOP RENORMALIZATION-GROUP ANALYSIS [J].
ANTONENKO, SA ;
SOKOLOV, AI .
PHYSICAL REVIEW B, 1994, 49 (22) :15901-15912
[4]   NONUNIVERSALITY IN HELICAL AND CANTED-SPIN SYSTEMS [J].
AZARIA, P ;
DELAMOTTE, B ;
JOLICOEUR, T .
PHYSICAL REVIEW LETTERS, 1990, 64 (26) :3175-3178
[5]   A RENORMALIZATION-GROUP STUDY OF HELIMAGNETS IN D=2+EPSILON DIMENSIONS [J].
AZARIA, P ;
DELAMOTTE, B ;
DELDUC, F ;
JOLICOEUR, T .
NUCLEAR PHYSICS B, 1993, 408 (03) :485-511
[6]  
BHATTACHARYA T, 1994, J PHYS I, V4, P181, DOI 10.1051/jp1:1994131
[7]   Phase diagram of XY antiferromagnetic stacked triangular lattices [J].
Boubcheur, EH ;
Loison, D ;
Diep, HT .
PHYSICAL REVIEW B, 1996, 54 (06) :4165-4169
[8]   Triangular antiferromagnets [J].
Collins, MF ;
Petrenko, OA .
CANADIAN JOURNAL OF PHYSICS, 1997, 75 (09) :605-655
[9]   EFFECTIVE ACTION FOR COMPOSITE OPERATORS [J].
CORNWALL, JM ;
JACKIW, R ;
TOMBOULIS, E .
PHYSICAL REVIEW D, 1974, 10 (08) :2428-2445
[10]   Generalized helimagnets between two and four dimensions [J].
David, F ;
Jolicoeur, T .
PHYSICAL REVIEW LETTERS, 1996, 76 (17) :3148-3151