NMDA enhances a depolarization-activated inward current in subthalamic neurons

被引:19
作者
Zhu, ZT
Munhall, A
Shen, KZ
Johnson, SW
机构
[1] Oregon Hlth Sci Univ, Dept Neurol, Portland, OR 97239 USA
[2] Portland VA Med Ctr, Portland, OR 97207 USA
关键词
NMDA; subthalamic nucleus; whole-cell voltage clamp; depolarization; Ca2+-activated non-selective cation current;
D O I
10.1016/j.neuropharm.2005.03.018
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Previous studies have shown that N-methyl-D-aspartate (NMDA) receptor stimulation evokes Ca2+- and Na+-dependent burst firing in subthalamic nucleus (STN) neurons. Using whole-cell patch pipettes to record currents under voltage-clamp, we identified a time-dependent depolarization-activated inward current (DIC) that may underlie NMDA-induced burst firing in STN neurons in rat brain slices. Continuous superfusion with NMDA (20 mu M) elicited a marked TTX-insensitive inward current when the membrane was depolarized to the level of -70 or -50 mV, from a holding potential of -100 mV. This current had a long duration, and its peak amplitude occurred at a test potential of -60 mV. DIC could not be evoked using the non-NMDA receptor agonist D,L-alpha-amino-3-hydroxy-5-methylisoxalone-4-propionic acid (AMPA). DIC was blocked by either intracellular BAPTA or by removal of extracellular Ca2+, but selective blockers of T-type (mibefradil), L-type (nifedipine) and N-type (omega-conotoxin GVIA) Ca2+ channels did not. Perfusing slices with a low extracellular concentration of sodium abolished the NMDA-induced DIC, implying that both Ca2+ and Na+ are necessary for the expression of DIC. Transient receptor potential (TRP) channel blockers flufenamic acid and SKF96365 severely reduced DIC amplitude, whereas NMDA-gated currents were either increased or were unchanged. These results suggest that the activation of NMDA receptors enhances a Ca2+-activated non-selective cation current that may be mediated by a member of the TRP channel family in STN neurons. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:317 / 327
页数:11
相关论文
共 46 条
[1]   Implication of the subthalamic nucleus in the pathophysiology and pathogenesis of Parkinson's disease [J].
Benazzouz, A ;
Piallat, B ;
Ni, ZG ;
Koudsie, A ;
Pollak, P ;
Benabid, AL .
CELL TRANSPLANTATION, 2000, 9 (02) :215-221
[2]   THE PRIMATE SUBTHALAMIC NUCLEUS .2. NEURONAL-ACTIVITY IN THE MPTP MODEL OF PARKINSONISM [J].
BERGMAN, H ;
WICHMANN, T ;
KARMON, B ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (02) :507-520
[3]   REVERSAL OF EXPERIMENTAL PARKINSONISM BY LESIONS OF THE SUBTHALAMIC NUCLEUS [J].
BERGMAN, H ;
WICHMANN, T ;
DELONG, MR .
SCIENCE, 1990, 249 (4975) :1436-1438
[4]   Slowly inactivating sodium current (INaP) underlies single-spike activity in rat subthalamic neurons [J].
Beurrier, C ;
Bioulac, B ;
Hammond, C .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (04) :1951-1957
[5]   Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode [J].
Beurrier, C ;
Congar, P ;
Bioulac, B ;
Hammond, C .
JOURNAL OF NEUROSCIENCE, 1999, 19 (02) :599-609
[6]   Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons [J].
Bevan, MD ;
Wilson, CJ .
JOURNAL OF NEUROSCIENCE, 1999, 19 (17) :7617-7628
[7]   Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs [J].
Bevan, MD ;
Magill, PJ ;
Hallworth, NE ;
Bolam, JP ;
Wilson, CJ .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 87 (03) :1348-1362
[8]   FRACTIONAL CALCIUM CURRENTS THROUGH RECOMBINANT GLUR CHANNELS OF THE NMDA, AMPA AND KAINATE RECEPTOR SUBTYPES [J].
BURNASHEV, N ;
ZHOU, Z ;
NEHER, E ;
SAKMANN, B .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 485 (02) :403-418
[9]   Ionic mechanism of long-lasting discharges of action Potentials triggered by membrane hyperpolarization in the medial lateral habenula [J].
Chang, SY ;
Kim, U .
JOURNAL OF NEUROSCIENCE, 2004, 24 (09) :2172-2181
[10]   PRIMATE MODELS OF MOVEMENT-DISORDERS OF BASAL GANGLIA ORIGIN [J].
DELONG, MR .
TRENDS IN NEUROSCIENCES, 1990, 13 (07) :281-285