Controlling chaos using invariant manifolds

被引:39
作者
Tian, YP [1 ]
机构
[1] SE Univ, Dept Automat Control, Nanjing 210018, Peoples R China
关键词
D O I
10.1080/002071799221235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An analytic non-linear control method based on the concept of macrovariable control is proposed to stabilize chaotic systems. The system trajectory is attracted to some selected invariant manifold by continuous feedback of system states which can be used as perturbations on an available system parameter or outer-force control. A recursive design procedure is also developed to guarantee the asymptotic stability of the system with saturated small controlling signal. The method is applied to stabilizing two typical chaotic non-linear systems at some equilibrium or periodic orbit.
引用
收藏
页码:258 / 266
页数:9
相关论文
共 16 条
[1]  
[Anonymous], CHAOS
[2]   TRANSITION TO CHAOS IN A SIMPLE NONLINEAR CIRCUIT DRIVEN BY A SINUSOIDAL VOLTAGE SOURCE [J].
AZZOUZ, A ;
DUHR, R ;
HASLER, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (12) :913-914
[4]  
GUCKENHEIMER J, 1983, SPRINGER SERIES ANAL, V42
[5]  
Gulick D, 1992, ENCOUNTERS CHAOS
[6]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[7]  
2
[8]   MAGNETOELASTIC STRANGE ATTRACTOR [J].
MOON, FC ;
HOLMES, PJ .
JOURNAL OF SOUND AND VIBRATION, 1979, 65 (02) :275-296
[9]   TAMING CHAOS .1. SYNCHRONIZATION [J].
OGORZALEK, MJ .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1993, 40 (10) :693-699
[10]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199