Protection of HIF-1-deficient primary renal tubular epithelial cells from hypoxia-induced cell death is glucose dependent

被引:31
作者
Biju, MP [1 ]
Akai, Y [1 ]
Shrimanker, N [1 ]
Haase, VH [1 ]
机构
[1] Univ Penn, Sch Med, Dept Med, Philadelphia, PA 19104 USA
关键词
apoptosis; glycolysis and glucose uptake; renal proximal tubule; Cre-loxP-mediated recombination;
D O I
10.1152/ajprenal.00233.2005
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Ischemic acute renal failure is a frequent clinical problem in hospitalized patients and is associated with significant mortality. Hypoxia-inducible factor 1 (HIF-1) mediates cellular adaptation to hypoxia by regulating biological processes important for cell survival, which include glycolysis, angiogenesis, erythropoiesis, apoptosis, and proliferation. To investigate the role of HIF-1 in hypoxia-induced renal epithelial cell death, we generated mice that allow inactivation of HIF-1 alpha by tetracycline-inducible Cre-loxP-mediated recombination in primary renal proximal tubule cells (PRPTC), resulting in a suppression of HIF-1-mediated gene transcription during oxygen deprivation. In the absence of glucose, the onset and the degree of hypoxia-induced cell death in HIF-1-deficient PRPTC were comparable to wild-type cells. However, when glucose availability was limited, the onset of cell death was delayed in either PRPTC that were HIF-1 deficient or in wild-type PRPTC when glycolysis or glucose uptake was partially inhibited. Our findings suggest in an in vitro genetic model that 1) the generation of adequate energy levels for the maintenance of PRPTC viability under hypoxia does not require HIF-1 and 2) that HIF-1 regulates the timing of hypoxia-induced cell death and apoptosis onset through its effects on glucose consumption.
引用
收藏
页码:F1217 / F1226
页数:10
相关论文
共 81 条
[1]  
Agarwal A, 2000, J AM SOC NEPHROL, V11, P965, DOI 10.1681/ASN.V115965
[2]   REGULATION OF GLYCOLYTIC METABOLISM DURING LONG-TERM PRIMARY CULTURE OF RENAL PROXIMAL TUBULE CELLS [J].
ALEO, MD ;
SCHNELLMANN, RG .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 262 (01) :F77-F85
[3]   Prosurvival and prodeath effects of hypoxia-inducible factor-1α stabilization in a murine hippocampal cell line [J].
Aminova, LR ;
Chavez, JC ;
Lee, J ;
Ryu, H ;
Kung, A ;
LaManna, JC ;
Ratan, RR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (05) :3996-4003
[4]   CHANGE IN ENERGY RESERVES IN DIFFERENT SEGMENTS OF THE NEPHRON DURING BRIEF ISCHEMIA [J].
BASTIN, J ;
CAMBON, N ;
THOMPSON, M ;
LOWRY, OH ;
BURCH, HB .
KIDNEY INTERNATIONAL, 1987, 31 (06) :1239-1247
[5]  
Bergeron M, 2000, ANN NEUROL, V48, P285, DOI 10.1002/1531-8249(200009)48:3<285::AID-ANA2>3.0.CO
[6]  
2-8
[7]   Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes [J].
Biju, MP ;
Neumann, AK ;
Bensinger, SJ ;
Johnson, RS ;
Turka, LA ;
Haase, VH .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (20) :9038-9047
[8]   Acute renal failure. I. Relative importance of proximal vs. distal tubular injury [J].
Bonventre, JV ;
Brezis, M ;
Siegel, N ;
Rosen, S ;
Portilla, D ;
Venkatachalam, M ;
Lieberthal, W ;
Nigam, SK .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1998, 275 (05) :F623-F631
[9]   Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia [J].
Bruick, RK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9082-9087
[10]   c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1 [J].
Brunelle, JK ;
Santore, MT ;
Budinger, GRS ;
Tang, YM ;
Barrett, TA ;
Zong, WX ;
Kandel, E ;
Keith, B ;
Simon, MC ;
Thompson, CB ;
Hay, N ;
Chandel, NS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (06) :4305-4312