Dual effects of an extra disulfide bond on the activity and stability of a cold-adapted α-amylase

被引:33
作者
D'Amico, S [1 ]
Gerday, C [1 ]
Feller, G [1 ]
机构
[1] Univ Liege, Biochem Lab, Inst Chem B6, B-4000 Liege, Belgium
关键词
D O I
10.1074/jbc.M207253200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chloride-dependent alpha-amylases constitute a well conserved family of enzymes thereby allowing investigation of the characteristics of each member to understand, for example, relevant properties required for environmental adaptation. In this context, we have constructed a double mutant (Q58C/A99C) of the cold-active and heat-labile alpha-amylase from the Antarctic bacterium Pseudoalteromonas haloplanktis, defined on the basis of its strong similarity with the mesophilic enzyme from pig pancreas. This mutant was characterized to understand the role of an extra disulfide bond specific to warm-blooded animals and located near the entrance of the catalytic cleft. We show that the catalytic parameters of the mutant are drastically modified and similar to those of the mesophilic enzyme. Calorimetric studies demonstrated that the mutant is globally stabilized (DeltaDeltaG = 1.87 kcal/mol at 20 degreesC) when compared with the wild-type enzyme, although the melting point (T-m) was not increased. Moreover, fluorescence quenching experiments indicate a more compact structure for the mutated a-amylase. However, the strain imposed on the active site architecture induces a 2-fold higher thermal inactivation rate at 45 degreesC as well as the appearance of a less stable calorimetric domain. It is concluded that stabilization by the extra disulfide bond arises from an enthalpy-entropy compensation effect favoring the enthalpic contribution.
引用
收藏
页码:46110 / 46115
页数:6
相关论文
共 31 条
[1]   Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level [J].
Aghajari, N ;
Feller, G ;
Gerday, C ;
Haser, R .
STRUCTURE, 1998, 6 (12) :1503-1516
[2]   Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor [J].
Aghajari, N ;
Feller, G ;
Gerday, C ;
Haser, R .
PROTEIN SCIENCE, 1998, 7 (03) :564-572
[3]   DISULFIDE BONDS AND THE STABILITY OF GLOBULAR-PROTEINS [J].
BETZ, SF .
PROTEIN SCIENCE, 1993, 2 (10) :1551-1558
[4]   DISULFIDE MUTANTS OF BARNASE .1. CHANGES IN STABILITY AND STRUCTURE ASSESSED BY BIOPHYSICAL METHODS AND X-RAY CRYSTALLOGRAPHY [J].
CLARKE, J ;
HENRICK, K ;
FERSHT, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (03) :493-504
[5]   DISULFIDE MUTANTS OF BARNASE .2. CHANGES IN STRUCTURE AND LOCAL STABILITY IDENTIFIED BY HYDROGEN-EXCHANGE [J].
CLARKE, J ;
HOUNSLOW, AM ;
FERSHT, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (03) :505-513
[6]   Structural similarities and evolutionary relationships in chloride-dependent α-amylases [J].
D'Amico, S ;
Gerday, C ;
Feller, G .
GENE, 2000, 253 (01) :95-105
[7]   Molecular basis of cold adaptation [J].
D'Amico, S ;
Claverie, P ;
Collins, T ;
Georlette, D ;
Gratia, E ;
Hoyoux, A ;
Meuwis, MA ;
Feller, G ;
Gerday, C .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2002, 357 (1423) :917-924
[8]   Structural determinants of cold adaptation and stability in a large protein [J].
D'Amico, S ;
Gerday, C ;
Feller, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) :25791-25796
[9]  
DOIG AJ, 1991, J MOL BIOL, V217, P389, DOI 10.1016/0022-2836(91)90551-G
[10]   Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanctis [J].
Feller, G ;
d'Amico, D ;
Gerday, C .
BIOCHEMISTRY, 1999, 38 (14) :4613-4619