One large-insert plant-transformation-competent BIBAC library and three BAC libraries of Japonica rice for genome research in rice and other grasses

被引:42
作者
Tao, Q
Wang, A
Zhang, HB
机构
[1] Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA
[2] Texas A&M Univ, Inst Plant Genom & Biotechnol, College Stn, TX 77843 USA
关键词
BAC and BIBAC library; plant transformation; genomics; positional cloning; rice;
D O I
10.1007/s00122-002-1057-3
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
We report one large-insert BIBAC library and three BAC libraries for japonica rice cv Nipponbare. The BIBAC library was constructed in the HindIII site of a plant-transformation-competent binary vector (pCLD04541) and the three BAC libraries were constructed in the BamHI, HindIII and EcoRI sites of a BAC vector (pECBAC1), respectively. Each library contains 23,040 clones, has an average insert size of 130 kb, 170 kb, 150 kb and 156 kb, and covers 6.7x, 8.7x, 7.7x and 8.0 x rice haploid genomes, respectively. The combined libraries contain 92,160 clones in total, covering 31.1 x rice haploid genomes. To demonstrate their utility, we screened the libraries with 55 DNA markers mapped to chromosome 8 of the rice genetic maps and analyzed a number of clones by the restriction fingerprinting and contig assembly method. The results indicate that the libraries completely cover the rice genome and, thus, are well-suited for genome research in rice and other gramineous crops. The BIBAC library represents the first plant-transformation-competent large-insert DNA library for rice, which will streamline map-based cloning, functional analysis of the rice genome sequence and molecular breeding in rice and other grass species. These libraries are being used in the development of a whole-genome, BAC/BIBAC-based, integrated physical, genetic and sequence map of rice and in the research of genome-wide comparative genomics of grass species.
引用
收藏
页码:1058 / 1066
页数:9
相关论文
共 50 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   HOMOEOLOGOUS RELATIONSHIPS OF RICE, WHEAT AND MAIZE CHROMOSOMES [J].
AHN, S ;
ANDERSON, JA ;
SORRELLS, ME ;
TANKSLEY, SD .
MOLECULAR & GENERAL GENETICS, 1993, 241 (5-6) :483-490
[3]   COMPARATIVE LINKAGE MAPS OF THE RICE AND MAIZE GENOMES [J].
AHN, S ;
TANKSLEY, SD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7980-7984
[4]  
Arumuganathan K., 1991, PLANT MOL BIOL REP, V9, P211, DOI DOI 10.1007/BF02672069
[5]   RPS2 OF ARABIDOPSIS-THALIANA - A LEUCINE-RICH REPEAT CLASS OF PLANT-DISEASE RESISTANCE GENES [J].
BENT, AF ;
KUNKEL, BN ;
DAHLBECK, D ;
BROWN, KL ;
SCHMIDT, R ;
GIRAUDAT, J ;
LEUNG, J ;
STASKAWICZ, BJ .
SCIENCE, 1994, 265 (5180) :1856-1860
[6]  
Budiman MA, 2000, GENOME RES, V10, P129
[7]  
CAUSSE MA, 1994, GENETICS, V138, P1251
[8]  
Chang YL, 2001, GENETICS, V159, P1231
[9]   Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes [J].
Chen, M ;
SanMiguel, P ;
deOliveira, AC ;
Woo, SS ;
Zhang, H ;
Wing, RA ;
Bennetzen, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (07) :3431-3435
[10]   COLONY BANK CONTAINING SYNTHETIC COL EL HYBRID PLASMIDS REPRESENTATIVE OF ENTIRE ESCHERICHIA-COLI GENOME [J].
CLARKE, L ;
CARBON, J .
CELL, 1976, 9 (01) :91-99