Fluvial landscape response time: How plausible is steady-state denudation?

被引:345
作者
Whipple, KX [1 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
关键词
D O I
10.2475/ajs.301.4-5.313
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Whether or not steady-state topography and denudation are probable states depends on the timescale of system response to tectonic and climatic perturbations relative to the frequency of those perturbations. This paper presents analytical derivations of algebraic relations for the response time of detachment-limited fluvial bedrock channel systems both to tectonic and climatic perturbations. Detachment-limited fluvial erosion is described by the stream-power incision model, and the derivations are limited to the applicability of that model. All factors likely to influence system response time that are not adequately captured by the stream-power incision model will tend to increase the response time. The calculations presented thus provide minimum estimates of landscape response time and therefore over-predict the probability of attaining and sustaining steady-state topography and denudation. The Central Range of Taiwan is used as a case study to estimate response times in a landscape often argued to be in steady state. Model parameters are fit to modem stream profiles by assuming that the topography represents a quasi-steady state form. Estimated response times generally range from 0.25 to 2.5 Ma, depending on the non-linearity of the incision rule and the magnitude and type of perturbation. Thus it may be reasonably argued that steady-state topography and denudation are likely to prevail during periods of climatic stability (response time is sufficiently short compared with plate tectonic timescales). However, rapid climatic fluctuation in the Quaternary appears to preclude the attainment of steady-state conditions in modern orogens.
引用
收藏
页码:313 / 325
页数:13
相关论文
共 61 条
[1]  
Adams J., 1985, TECTONIC GEOMORPHOLO, P105
[2]  
[Anonymous], 1998, RIVERS ROCK FLUVIAL, DOI DOI 10.1029/GM107P0237
[3]  
[Anonymous], 1991, Qualitative Health Research, DOI DOI 10.1177/104973239100100103
[4]  
BALDWIN JA, 1999, EOS T AM GEOPHYS UN, V80, P473
[5]   The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observations [J].
Beaumont, C ;
Kamp, PJJ ;
Hamilton, J ;
Fullsack, P .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1996, 101 (B2) :3333-3359
[6]  
Bull W.B., 1991, GEOMORPHIC RESPONSES
[7]   Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments [J].
Fernandes, NF ;
Dietrich, WE .
WATER RESOURCES RESEARCH, 1997, 33 (06) :1307-1318
[8]   STREAM GRADIENT AS A FUNCTION OF ORDER, MAGNITUDE, AND DISCHARGE [J].
FLINT, JJ .
WATER RESOURCES RESEARCH, 1974, 10 (05) :969-973
[9]   Fission track analysis and its applications to geological problems [J].
Gallagher, K ;
Brown, R ;
Johnson, C .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 1998, 26 :519-572
[10]  
HACK JT, 1957, US GEOL SURV PROF B, V294, P97