Optional decompositions under constraints

被引:116
作者
Follmer, H [1 ]
Kramkov, D [1 ]
机构
[1] VA STEKLOV MATH INST,MOSCOW 117966,RUSSIA
关键词
D O I
10.1007/s004400050122
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by a hedging problem in mathematical finance, El Karoui and Quenez [7] and Kramkov [14] have developed optional; versions of the Doob-Meyer decomposition which hold simultaneously for all equivalent martingale measures. We investigate the general structure of such optional decompositions, both in additive and in multiplicative form, and under constraints corresponding to different classes of equivalent measures. As an application, we extend results of Karatzas and Cvitanic [3] on hedging problems with constrained portfolios.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 20 条
[1]  
BENSOUSSAN A, 1984, ACTA APPL MATH, V2, P139
[2]  
Cvitani J., 1993, Ann. Appl. Probab., P652
[3]  
Cvitani J., 1992, ANN APPL PROBAB, V2, P767, DOI 10.1214/aoap/1177005576
[4]   A GENERAL VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING [J].
DELBAEN, F ;
SCHACHERMAYER, W .
MATHEMATISCHE ANNALEN, 1994, 300 (03) :463-520
[5]  
DELBAEN F, 1996, COMPACTNESS PRINCIPL
[6]  
DELLACHERIE C, 1982, PROBABILITIES POTENB, V72
[7]   DYNAMIC-PROGRAMMING AND PRICING OF CONTINGENT CLAIMS IN AN INCOMPLETE MARKET [J].
ELKAROUI, N ;
QUENEZ, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) :29-66
[8]  
Elliott R. J., 1982, Stochastic Calculus and Applications
[9]  
EMERY M, 1979, LECT NOTES MATH, V721, P260
[10]  
FOLLMER H, IN PRESS FINANCE STO