A finite element variational multiscale method for the Navier-Stokes equations

被引:165
作者
John, V
Kaya, S
机构
[1] Otto Von Guericke Univ, Fac Math, D-39016 Magdeburg, Germany
[2] IIT, Dept Math, Chicago, IL 60616 USA
关键词
variational multiscale method; finite element method; Navier-Stokes equations; turbulent flows;
D O I
10.1137/030601533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a variational multiscale method (VMS) for the incompressible Navier-Stokes equations which is defined by a large scale space L-H for the velocity deformation tensor and a turbulent viscosity nu(T). The connection of this method to the standard formulation of a VMS is explained. The conditions on L-H under which the VMS can be implemented easily and efficiently into an existing finite element code for solving the Navier - Stokes equations are studied. Numerical tests with the Smagorinsky large eddy simulation model for nu(T) are presented.
引用
收藏
页码:1485 / 1503
页数:19
相关论文
共 35 条
[1]  
Adams R., 1975, Sobolev space
[2]  
[Anonymous], 0305 TRMATH U PITTSB
[3]  
BERSELLI LC, 2004, 12 U PIS DIP MAT APP
[4]  
BERSELLI LC, 2004, 18 U PIS DIP MAT APP
[5]   A priori error analysis of residual-free bubbles for advection-diffusion problems [J].
Brezzi, F ;
Hughes, TJR ;
Marini, LD ;
Russo, A ;
Süli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (06) :1933-1948
[6]   NUMERICAL-METHODS FOR THE NAVIER-STOKES EQUATIONS - APPLICATIONS TO THE SIMULATION OF COMPRESSIBLE AND INCOMPRESSIBLE VISCOUS FLOWS [J].
BRISTEAU, MO ;
GLOWINSKI, R ;
PERIAUX, J .
COMPUTER PHYSICS REPORTS, 1987, 6 (1-6) :73-187
[7]   Monitoring unresolved scales in multiscale turbulence modeling [J].
Collis, SS .
PHYSICS OF FLUIDS, 2001, 13 (06) :1800-1806
[8]   LARGE-SCALE AND SMALL-SCALE STIRRING OF VORTICITY AND A PASSIVE SCALAR IN A 3-D TEMPORAL MIXING LAYER [J].
COMTE, P ;
LESIEUR, M ;
LAMBALLAIS, E .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (12) :2761-2778
[9]  
DUBOIS T, 1998, DYNAMIC MULTILEVEL M
[10]  
Dunca A, 2004, ADV MATH FLUID MECH, P53