Inactivation of a human kinetochore by specific targeting of chromatin modifiers

被引:215
作者
Nakano, Megumi [1 ]
Cardinale, Stefano [2 ]
Noskov, Vladimir N. [1 ]
Gassmann, Reto [2 ]
Vagnarelli, Paola [2 ]
Kandels-Lewis, Stefanie [2 ]
Larionov, Vladimir [1 ]
Earnshaw, William C. [2 ]
Masumoto, Hiroshi [1 ]
机构
[1] NCI, Mol Pharmacol Lab, NIH, Bethesda, MD 20892 USA
[2] Univ Edinburgh, Welcome Trust Ctr Cell Biol, Edinburgh EH9 3JR, Midlothian, Scotland
基金
英国惠康基金;
关键词
D O I
10.1016/j.devcel.2008.02.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have used a human artificial chromosome (HAC) to manipulate the epigenetic state of chromatin within an active kinetochore. The HAC has a dimeric alpha-satellite repeat containing one natural monomer with a CENP-B binding site, and one completely artificial synthetic monomer with the CENP-B box replaced by a tetracycline operator (tetO). This HAC exhibits normal kinetochore protein composition and mitotic stability. Targeting of several tet-repressor (tetR) fusions into the centromere had no effect on kinetochore function. However, altering the chromatin state to a more open configuration with the tTA transcriptional activator or to a more closed state with the tTS transcription silencer caused missegregation and loss of the HAC. tTS binding caused the loss of CENP-A, CENP-B, CENP-C, and H3K4me2 from the centromere accompanied by an accumulation of histone H3K9me3. Our results reveal that a dynamic balance between centromeric chromatin and heterochromatin is essential for vertebrate kinetochore activity.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 63 条
[1]   Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1β/KRIP-1) [J].
Agata, Y ;
Matsuda, E ;
Shimizu, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16412-16422
[2]   POSITION EFFECT VARIEGATION AT FISSION YEAST CENTROMERES [J].
ALLSHIRE, RC ;
JAVERZAT, JP ;
REDHEAD, NJ ;
CRANSTON, G .
CELL, 1994, 76 (01) :157-169
[3]   Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres [J].
Alonso, A ;
Mahmood, R ;
Li, SL ;
Cheung, F ;
Yoda, K ;
Warburton, PE .
HUMAN MOLECULAR GENETICS, 2003, 12 (20) :2711-2721
[4]   Structural determinants for generating centromeric chromatin [J].
Black, BE ;
Foltz, DR ;
Chakravarthy, S ;
Luger, K ;
Woods, VL ;
Cleveland, DW .
NATURE, 2004, 430 (6999) :578-582
[5]   Conserved organization of centromeric chromatin in flies and humans [J].
Blower, MD ;
Sullivan, BA ;
Karpen, GH .
DEVELOPMENTAL CELL, 2002, 2 (03) :319-330
[6]   A SURVEY OF THE GENOMIC DISTRIBUTION OF ALPHA-SATELLITE DNA ON ALL THE HUMAN-CHROMOSOMES, AND DERIVATION OF A NEW CONSENSUS SEQUENCE [J].
CHOO, KH ;
VISSEL, B ;
NAGY, A ;
EARLE, E ;
KALITSIS, P .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1179-1182
[7]   Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere [J].
Chueh, AC ;
Wong, LH ;
Wong, N ;
Choo, KHA .
HUMAN MOLECULAR GENETICS, 2005, 14 (01) :85-93
[8]   IDENTIFICATION OF ESSENTIAL COMPONENTS OF THE SACCHAROMYCES-CEREVISIAE KINETOCHORE [J].
DOHENY, KF ;
SORGER, PK ;
HYMAN, AA ;
TUGENDREICH, S ;
SPENCER, F ;
HIETER, P .
CELL, 1993, 73 (04) :761-774
[9]   3 RELATED CENTROMERE PROTEINS ARE ABSENT FROM THE INACTIVE CENTROMERE OF A STABLE ISODICENTRIC CHROMOSOME [J].
EARNSHAW, WC ;
MIGEON, BR .
CHROMOSOMA, 1985, 92 (04) :290-296
[10]   Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation [J].
Ebersole, T ;
Okamoto, Y ;
Noskov, VN ;
Kouprina, N ;
Kim, JH ;
Leem, SH ;
Barrett, JC ;
Masumoto, H ;
Larionov, V .
NUCLEIC ACIDS RESEARCH, 2005, 33 (15) :1-8