Continuous-time linear predictive control and flatness: a module-theoretic setting with examples

被引:82
作者
Fliess, M
Marquez, R
机构
[1] Ecole Normale Super Cachan, Ctr Math & Leurs Applicat, F-94235 Cachan, France
[2] Univ Paris Sud, CNRS Supelec, Signaux & Syst Lab, F-91192 Gif Sur Yvette, France
[3] Univ Los Andes, Fac Ingn, Dept Sistemas Control, Merida 5101, Venezuela
关键词
D O I
10.1080/002071700219452
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A general flatness-based framework for linear continuous-time predictive control is presented. The mathematical setting, which is valid for multivariable systems, is provided by the algebraic theory of modules where a controllable system corresponds to a finitely generated free module over a principal ideal ring. Any basis of this free module is a hat output which yields an easy calculation of the predicted trajectory. This formalism permits one to handle non-minimum phase systems, system constraints, and to deal with additive perturbations. Three concrete case studies, namely a de motor, a flexible system, and a cement mill, are analysed and simulations are given. These examples are written in such a way that any reader who is not familiar with module theory may nevertheless grasp the proposed control strategy.
引用
收藏
页码:606 / 623
页数:18
相关论文
共 61 条
[1]  
[Anonymous], 2003, Model Predictive Control
[2]  
[Anonymous], 1987, CONTROL SYSTEM SYNTH
[3]  
BABARY JP, 1985, COMMANDE OPTIMALE SY
[4]  
Bemporad A, 1999, LECT NOTES CONTR INF, V245, P207
[5]   Survey of numerical methods for trajectory optimization [J].
Betts, JT .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1998, 21 (02) :193-207
[6]  
BITAULD L, 1997, P 4 EUR CONTR C BRUS
[7]  
Bitmead RR, 1990, ADAPTIVE OPTIMAL CON
[8]  
BOUCHER P, 1996, COMMANDE PREDICTIVE
[9]   Finite poles and zeros of linear systems: an intrinsic approach [J].
Bourles, H ;
Fliess, M .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (04) :897-922
[10]  
Callier F. M., 1982, Multivariable Feedback Systems