Chaos from linear systems: Implications for communicating with chaos, and the nature of determinism and randomness

被引:29
作者
Hayes, Scott T. [1 ]
机构
[1] USA, RDECOM, AMSRD AMR WS ST, Redstone Arsenal, AL 35898 USA
来源
INTERNATIONAL CONFERENCE ON CONTROL AND SYNCHRONIZATION OF DYNAMICAL SYSTEMS (CSDS-2005) | 2005年 / 23卷
关键词
D O I
10.1088/1742-6596/23/1/024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method is developed for producing deterministic chaotic motion from the linear superposition of a bi-infinite sequence of randomly polarized basis functions. The resultant waveform is also formally a random process in the usual sense. In the example given, a three-dimensional embedding produces an idealized version of Lorenz motion. The one-dimensional approximate return map is piecewise linear; a tent or shift, depending on the Poincare section. The results are presented in an informal style so that they are accessible to a wide audience interested in both theory and applications of symbolic dynamics communication.
引用
收藏
页码:215 / 237
页数:23
相关论文
共 13 条
[1]  
[Anonymous], 1995, An introduction to symbolic dynamics and coding, DOI DOI 10.1017/CBO9780511626302
[2]  
[Anonymous], J ATMOSPHERIC SCI
[3]  
DANIEL JR, 1990, FUNDAMENTALS MEASURA
[4]  
DONALD SO, 1974, ERGODIC THEORY RANDO
[5]   COMMUNICATING WITH CHAOS [J].
HAYES, S ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1993, 70 (20) :3031-3034
[6]   EXPERIMENTAL CONTROL OF CHAOS FOR COMMUNICATION [J].
HAYES, S ;
GREBOGI, C ;
OTT, E ;
MARK, A .
PHYSICAL REVIEW LETTERS, 1994, 73 (13) :1781-1784
[7]  
HAYES S, 1990, NONLINEAR DYNAMICS C, P325
[8]  
Kaplan J. L., 1979, Functional Differential Equations and Approximation of Fixed Points, P204, DOI DOI 10.1103/PhysRevE.73.026214
[9]  
PATRICK B, 1965, ERGODIC THEORY INFOR
[10]  
RICHARD EB, 1990, DIGITAL TRANSMISSION