Effect of viscosity in the dynamics of two point vortices: Exact results

被引:13
作者
Agullo, O [1 ]
Verga, A
机构
[1] Univ Aix Marseille 1, Ctr Univ St Jerome, CNRS, Equipe Dynam Syst Complexes,UMR 6633, F-13397 Marseille 20, France
[2] Univ Aix Marseille 1, Inst Rech Phenomenes Hors Equilibre, CNRS, UMR 6594, F-13384 Marseille, France
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 05期
关键词
D O I
10.1103/PhysRevE.63.056304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An exact, unstationary, two-dimensional solution of the Navier-Stokes equations for the flow generated by two point Vortices is obtained. The viscosity v is introduced as a Brownian motion in the Hamiltonian dynamics of point vortices. The point vortices execute a stochastic motion whose probability density can be computed from a Fokker-Planck equation, equivalent to the original Navier-Stokes equation. The derived solution describes, in particular, the merging process of two Lamb vortices, and the development of the characteristic spiral structure in the topology of the vorticity. The viscous effects are thoroughly investigated by an asymptotic analysis of the solution. In particular, the selection mechanism of a specific pattern among the infinity satisfying the v=0 (Euler) equation is discussed.
引用
收藏
页码:563041 / 563041
页数:14
相关论文
共 29 条
[1]   Exact two vortices solution of Navier-Stokes equations [J].
Agullo, O ;
Verga, AD .
PHYSICAL REVIEW LETTERS, 1997, 78 (12) :2361-2364
[2]   Time-dependent geometry and energy distribution in a spiral vortex layer [J].
Angilella, JR ;
Vassilicos, JC .
PHYSICAL REVIEW E, 1999, 59 (05) :5427-5439
[3]  
[Anonymous], 1885, CRELLE J
[5]   EVOLUTION OF VORTEX STATISTICS IN 2-DIMENSIONAL TURBULENCE [J].
CARNEVALE, GF ;
MCWILLIAMS, JC ;
POMEAU, Y ;
WEISS, JB ;
YOUNG, WR .
PHYSICAL REVIEW LETTERS, 1991, 66 (21) :2735-2737
[6]   Numerical study of slightly viscous flow [J].
Chorin, Alexandre Joel .
JOURNAL OF FLUID MECHANICS, 1973, 57 :785-796
[7]   QUANTIFICATION OF THE INELASTIC INTERACTION OF UNEQUAL VORTICES IN 2-DIMENSIONAL VORTEX DYNAMICS [J].
DRITSCHEL, DG ;
WAUGH, DW .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (08) :1737-1744
[8]  
Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3
[9]  
Gihman I., 1972, STOCHASTIC DIFFERENT
[10]  
Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products