Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes?

被引:273
作者
Papo, N [1 ]
Shai, Y [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
关键词
antimicrobial peptides; LPS; peptidoglycan; glycocalix layer; model phospholipids membranes; peptide-lipid interactions;
D O I
10.1016/j.peptides.2003.09.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cationic antibacterial peptides are produced in all living organisms and possess either selective activity toward a certain type of cell or microorganism, or a broad spectrum of activity toward several types of cells including prokaryotic and mammalian cells. In order to exert their activity, peptides first interact with and traverse an outer barrier, e.g., mainly LPS and peptidoglycan in bacteria or a glycocalix layer and matrix proteins in mammalian cells. Only then, can the peptides bind and insert into the cytoplasmic membrane. The mode of action of many antibacterial peptides is believed to be the disruption of the lipidic plasma membrane. Therefore, model phospholipid membranes have been used to study the mode of action of antimicrobial peptides. These studies have demonstrated that peptides that act preferentially on bacteria are also able to interact with and permeate efficiently anionic phospholipids, whereas peptides that lyse mammalian cells bind and permeate efficiently both acidic and zwitterionic phospholipids membranes, mimicking the plasma membranes of these cells. It is now becoming increasingly clear that selective activity of these peptides against different cells depends also on other parameters that characterize both the peptide and the target cell. With respect to the peptide's properties, these include the volume of the molecule, its structure, and its oligomeric state in solution and in membranes. Regarding the target membrane, these include the structure, length, and complexity of the hydrophilic polysaccharide found in its outer layer. These parameters affect the ability of the peptides to diffuse through the cell's outer barrier and to reach its cytoplasmic plasma membrane. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:1693 / 1703
页数:11
相关论文
共 101 条
[1]   FALL-39, A PUTATIVE HUMAN PEPTIDE ANTIBIOTIC, IS CYSTEINE-FREE AND EXPRESSED IN BONE-MARROW AND TESTIS [J].
AGERBERTH, B ;
GUNNE, H ;
ODEBERG, J ;
KOGNER, P ;
BOMAN, HG ;
GUDMUNDSSON, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (01) :195-199
[2]   Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis [J].
Allende, D ;
McIntosh, TJ .
BIOCHEMISTRY, 2003, 42 (04) :1101-1108
[3]  
Andreu D, 1998, BIOPOLYMERS, V47, P415, DOI 10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO
[4]  
2-D
[5]   Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides [J].
Avrahami, D ;
Oren, Z ;
Shai, Y .
BIOCHEMISTRY, 2001, 40 (42) :12591-12603
[6]   AMPHIBIAN SKIN - A PROMISING RESOURCE FOR ANTIMICROBIAL PEPTIDES [J].
BARRA, D ;
SIMMACO, M .
TRENDS IN BIOTECHNOLOGY, 1995, 13 (06) :205-209
[7]   Biophysical investigations of membrane perturbations by polypeptides using solid-state NMR spectroscopy (review) [J].
Bechinger, B .
MOLECULAR MEMBRANE BIOLOGY, 2000, 17 (03) :135-142
[8]   DESIGN OF MODEL AMPHIPATHIC PEPTIDES HAVING POTENT ANTIMICROBIAL ACTIVITIES [J].
BLONDELLE, SE ;
HOUGHTEN, RA .
BIOCHEMISTRY, 1992, 31 (50) :12688-12694
[9]   PEPTIDE ANTIBIOTICS AND THEIR ROLE IN INNATE IMMUNITY [J].
BOMAN, HG .
ANNUAL REVIEW OF IMMUNOLOGY, 1995, 13 :61-92
[10]   Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic [J].
Breukink, E ;
Wiedemann, I ;
van Kraaij, C ;
Kuipers, OP ;
Sahl, HG ;
de Kruijff, B .
SCIENCE, 1999, 286 (5448) :2361-2364