Tropospheric chemistry of aromatic compounds emitted from anthropogenic sources

被引:10
作者
Andino, Jean M. [1 ]
Vivier-Bunge, Annik [1 ]
机构
[1] Arizona State Univ, Dept Civil & Environm Engn, Tempe, AZ 85287 USA
来源
ADVANCES IN QUANTUM CHEMISTRY, VOL 55: APPLICATIONS OF THEORETICAL METHODS TO ATMOSPHERIC SCIENCE | 2008年 / 55卷
关键词
D O I
10.1016/S0065-3276(07)00214-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The kinetics and mechanisms associated with the atmospheric photooxidation of aromatic compounds emitted from anthropogenic sources are of seminal importance in the chemistry of the urban and regional atmosphere. Aromatic compounds readily react with hydroxyl radicals to lead to ozone and aerosol formation. However, over the years, difficulties have existed in unambiguously identifying the stable species formed. Thus, only 60-70% of the reacted carbon has been fully accounted for. This article summarizes the major advances that have been made towards elucidating the atmospheric chemistry of anthropogenic aromatic hydrocarbons using computational chemistry. In addition, the computational data are compared to experimental data, and areas for future advances in the community's understanding of aromatic reactions through the use of computational chemistry calculations are discussed.
引用
收藏
页码:297 / 310
页数:14
相关论文
共 49 条
[1]   Products of the gas-phase reactions of O(3P) atoms and O3 with α-pinene and 1,2-dimethyl-1-cyclohexene [J].
Alvarado, A ;
Tuazon, EC ;
Aschmann, SM ;
Atkinson, R ;
Arey, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D19) :25541-25551
[2]   On the importance of prereactive complexes in molecule-radical reactions: Hydrogen abstraction from aldehydes by OH [J].
Alvarez-Idaboy, JR ;
Mora-Diez, N ;
Boyd, RJ ;
Vivier-Bunge, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (09) :2018-2024
[3]   Mechanism of atmospheric photooxidation of aromatics: A theoretical study [J].
Andino, JM ;
Smith, JN ;
Flagan, RC ;
Goddard, WA ;
Seinfeld, JH .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (26) :10967-10980
[4]   Products of reaction of OH radicals with α-pinene -: art. no. 4191 [J].
Aschmann, SM ;
Atkinson, R ;
Arey, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D14) :ACH6-1
[5]   OH radical formation from the gas-phase reactions of O3 with a series of terpenes [J].
Aschmann, SM ;
Arey, J ;
Atkinson, R .
ATMOSPHERIC ENVIRONMENT, 2002, 36 (27) :4347-4355
[6]   Atmospheric degradation of volatile organic compounds [J].
Atkinson, R ;
Arey, J .
CHEMICAL REVIEWS, 2003, 103 (12) :4605-4638
[7]  
Baker J, 2001, INT J CHEM KINET, V34, P73
[8]   DENSITY-FUNCTIONAL THEORY DERIVED INTERMEDIATES FROM THE OH INITIATED ATMOSPHERIC OXIDATION OF TOLUENE [J].
BARTOLOTTI, LJ ;
EDNEY, EO .
CHEMICAL PHYSICS LETTERS, 1995, 245 (01) :119-122
[9]   Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons [J].
Bloss, C ;
Wagner, V ;
Jenkin, ME ;
Volkamer, R ;
Bloss, WJ ;
Lee, JD ;
Heard, DE ;
Wirtz, K ;
Martin-Reviejo, M ;
Rea, G ;
Wenger, JC ;
Pilling, MJ .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :641-664
[10]   Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data [J].
Bloss, C ;
Wagner, V ;
Bonzanini, A ;
Jenkin, ME ;
Wirtz, K ;
Martin-Reviejo, M ;
Pilling, MJ .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :623-639