The binding between the stem regions of human growth hormone (GH) receptor compensates for the weaker site 1 binding of 20-kDa human GH (hGH) than that of 22-kDa hGH

被引:9
作者
Tsunekawa, B
Wada, M
Ikeda, M
Banba, S
Kamachi, H
Tanaka, E
Honjo, M
机构
[1] Mitsui Chem Inc, Life Sci Lab, Pharmaceut Sect, Chiba 2970017, Japan
[2] Mitsui Chem Inc, Life Sci Lab, Dept Comp Sci, Chiba 2970017, Japan
关键词
D O I
10.1074/jbc.M001236200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite the lower site 1 affinity of the 20-kDa human growh hormone (20K-hGH) for the hGH receptor (hGHR), 20K-hGH has the same hGHR-mediated activity as 22-kDa human GH (22K-hGH) at low hGH concentration and even higher activity at high hGH concentration. This study was performed to elucidate the reason why 20K-hGH can activate hGHR to the same level as 22K-hGH, To answer the question, we hypothesized that the binding between the stem regions of hGHR could compensate for the weaker site 1 binding of 20K-hGH than that of 22K-hGH in the sequential binding with hGHR, To demonstrate it, we prepared 15 types of alanine-substituted hGHR gene at the stem region and stably transfected them into Ba/F3 cells. Using these cells, we measured and compared the cell proliferation activities between 20K- and 22K-hGH. As a result, the activity of 20K-hGH was markedly reduced than that of 22K-hGH in three types of mutant hGHR (T147A, H150A, and Y200A). Regarding these mutants, the dissociation constant of hGH at the first and second step (KD1 and KD2) in the sequential binding with two hGHRs was predicted based on the mathematical cell proliferation model and computational simulation. Consequently, it was revealed that the reduction of the activity in 20K-hGH was attributed to the change of not KD1 but KD2. In conclusion, these findings support our hypothesis, which can account for the same potencies for activating hGHR between 20K- and 22K-hGH, although the site 1 affinity of 20K-hGH is lower than that of 22K-hGH.
引用
收藏
页码:15652 / 15656
页数:5
相关论文
共 27 条
[1]   IDENTIFICATION OF JAK2 AS A GROWTH-HORMONE RECEPTOR-ASSOCIATED TYROSINE KINASE [J].
ARGETSINGER, LS ;
CAMPBELL, GS ;
YANG, XN ;
WITTHUHN, BA ;
SILVENNOINEN, O ;
IHLE, JN ;
CARTERSU, C .
CELL, 1993, 74 (02) :237-244
[2]   GROWTH-HORMONE HETEROGENEITY - GENES, ISOHORMONES, VARIANTS, AND BINDING-PROTEINS [J].
BAUMANN, G .
ENDOCRINE REVIEWS, 1991, 12 (04) :424-449
[3]   SUGGESTIONS FOR SAFE RESIDUE SUBSTITUTIONS IN SITE-DIRECTED MUTAGENESIS [J].
BORDO, D ;
ARGOS, P .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 217 (04) :721-729
[4]   The role of receptor dimerization domain residues in growth hormone signaling [J].
Chen, CM ;
Brinkworth, R ;
Waters, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :5133-5140
[5]   Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity [J].
Clackson, T ;
Ultsch, MH ;
Wells, JA ;
de Vos, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (05) :1111-1128
[6]   COMPARISON OF A STRUCTURAL AND A FUNCTIONAL EPITOPE [J].
CUNNINGHAM, BC ;
WELLS, JA .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :554-563
[7]   DIMERIZATION OF THE EXTRACELLULAR DOMAIN OF THE HUMAN GROWTH-HORMONE RECEPTOR BY A SINGLE HORMONE MOLECULE [J].
CUNNINGHAM, BC ;
ULTSCH, M ;
DEVOS, AM ;
MULKERRIN, MG ;
CLAUSER, KR ;
WELLS, JA .
SCIENCE, 1991, 254 (5033) :821-825
[8]   HIGH-RESOLUTION EPITOPE MAPPING OF HGH-RECEPTOR INTERACTIONS BY ALANINE-SCANNING MUTAGENESIS [J].
CUNNINGHAM, BC ;
WELLS, JA .
SCIENCE, 1989, 244 (4908) :1081-1085
[9]   HUMAN GROWTH-HORMONE DNA-SEQUENCE AND MESSENGER-RNA STRUCTURE - POSSIBLE ALTERNATIVE SPLICING [J].
DENOTO, FM ;
MOORE, DD ;
GOODMAN, HM .
NUCLEIC ACIDS RESEARCH, 1981, 9 (15) :3719-3730
[10]   HUMAN GROWTH-HORMONE AND EXTRACELLULAR DOMAIN OF ITS RECEPTOR - CRYSTAL-STRUCTURE OF THE COMPLEX [J].
DEVOS, AM ;
ULTSCH, M ;
KOSSIAKOFF, AA .
SCIENCE, 1992, 255 (5042) :306-312