Temporal gene-expression in Escherichia coli K-12 biofilms

被引:234
作者
Domka, Joanna
Lee, Jintae
Bansal, Tarun
Wood, Thomas K. [1 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Dept, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[3] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA
关键词
D O I
10.1111/j.1462-2920.2006.01143.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Analysis of the temporal development of Escherichia coli K-12 biofilms in complex medium indicates the greatest differential gene expression between biofilm and suspension cells occurred in young biofilms at 4 and 7 h (versus 15 and 24 h). The main classes of genes differentially expressed (biofilm versus biofilm and biofilm versus suspension cells) include 42 related to stress response (e.g. cspABFGI), 66 related to quorum sensing (e.g. ydgG, gadABC, hdeABD), 20 related to motility (e.g. flgBCEFH, fliLMQR, motB), 13 related to fimbriae (e.g. sfmCHM, fimZ, csgC), 24 related to sulfur and tryptophan metabolism (e.g. trpLBA, tnaLA, cysDNCJH), 80 related to transport (e.g. gatABC, agaBC, ycjJ, ydfJ, phoU, phnCJKM), and six related to extracellular matrix (e.g. wcaBDEC). Of the 93 mutants identified and studied, 76 showed altered biofilm formation. Biofilm architecture changed from thin and dense to globular and dispersed to dense and smooth. The quorum-sensing signal AI-2 controls gene expression most clearly in mature biofilms (24 h) when intracellular AI-2 levels are highest. Sulfate transport and metabolism genes (cysAUWDN) and genes with unknown functions (ymgABCZ) were repressed in young (4, 7 h) biofilms, induced in developed biofilms (15 h), and repressed in mature (24 h) biofilms. Genes related to both motility and fimbriae were induced in biofilms at all sampling time points and colanic acid genes were induced in mature biofilms (24 h). Genes related to dihydroxyacetone phosphate synthesis from galactitol and galactosamine (e.g. gatZABCDR, agaBCY) were highly regulated in biofilms. Genes involved in the biosynthesis of indole and sulfide (tnaLA) are repressed in biofilms after 7 h (corroborated by decreasing intracellular indole concentrations in biofilms). Cold-shock protein transcriptional regulators (cspABFGI) appear to be positive biofilm regulators, and deletions in respiratory genes (e.g. hyaACD, hyfCG, appC, narG) increased biofilm formation sevenfold.
引用
收藏
页码:332 / 346
页数:15
相关论文
共 53 条
[1]  
Babalola Stella, 2002, Afr J AIDS Res, V1, P11, DOI 10.2989/16085906.2002.9626540
[2]  
Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562
[3]   Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility [J].
Barrios, AFG ;
Zuo, RJ ;
Ren, DC ;
Wood, TK .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 93 (01) :188-200
[4]   Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022) [J].
Barrios, AFG ;
Zuo, RJ ;
Hashimoto, Y ;
Yang, L ;
Bentley, WE ;
Wood, TK .
JOURNAL OF BACTERIOLOGY, 2006, 188 (01) :305-316
[5]   Finding gene-expression patterns in bacterial biofilms [J].
Beloin, C ;
Ghigo, JM .
TRENDS IN MICROBIOLOGY, 2005, 13 (01) :16-19
[6]   Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression [J].
Beloin, C ;
Valle, J ;
Latour-Lambert, P ;
Faure, P ;
Kzreminski, M ;
Balestrino, D ;
Haagensen, JAJ ;
Molin, S ;
Prensier, G ;
Arbeille, B ;
Ghigo, JM .
MOLECULAR MICROBIOLOGY, 2004, 51 (03) :659-674
[7]   Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli [J].
Brinkkötter, A ;
Klöss, H ;
Alpert, CA ;
Lengeler, JW .
MOLECULAR MICROBIOLOGY, 2000, 37 (01) :125-135
[8]   A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth [J].
Corona-Izquierdo, FP ;
Membrillo-Hernández, J .
FEMS MICROBIOLOGY LETTERS, 2002, 211 (01) :105-110
[9]   MICROBIAL BIOFILMS [J].
COSTERTON, JW ;
LEWANDOWSKI, Z ;
CALDWELL, DE ;
KORBER, DR ;
LAPPINSCOTT, HM .
ANNUAL REVIEW OF MICROBIOLOGY, 1995, 49 :711-745
[10]   Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture [J].
Danese, PN ;
Pratt, LA ;
Kolter, R .
JOURNAL OF BACTERIOLOGY, 2000, 182 (12) :3593-3596