The control over self-assembly behavior becomes absolutely critical because it is dependent on the orientation and morphology. The motivation is focused on borrowing the help of O-H center dot center dot center dot O hydrogen bonding interactions to realize the control in chiral self-assembly. A series of perylene bisimide (PBI) dyes 3a-3d bearing chiral amino acid derivatives on the imide N atoms and four phenoxy-type substituents at the bay positions of the perylene core were synthesized. Optical properties and aggregation behavior of PBIs were investigated by absorption, fluorescence, circular dichroism (CD), and H-1 NMR spectroscopy. Except for the chiral ester 3c and achiral 3d, chiral dyes 3a and 3b show bisignated CD signals, indicating that the chiral carboxylic acid-functionalized PBI systems are found to be spontaneously self-assembled into supramolecular helices via intermolecular hydrogen bonding rather than pi-pi stacking. Furthermore, the chirality-controlled helical superstructures are strongly dependent on several factors, such as solvent polarity, concentration, and temperature. The supramolecular helical chirality can be well-controlled by the chiral amino acid residues in the PBI system; that is, the assembled clockwise (plus, P) or anticlockwise (minus, M) helices can be induced by L- or D-isomers, respectively.