We tested the hypothesis that activation of Na+/H+ exchanger is involved in dilator responses of the basilar artery to endothelium-dependent vasodilators in vivo. Using a cranial window in anesthetized rats. we examined responses of the basilar artery to acetylcholine and bradykinin. Topical application of acetylcholine and bradykinin increased diameter of the basilar artery in a concentration-related manner. Because N-G-nitro-L-arginine, an inhibitor of nitric oxide synthase, almost abolished vasodilator responses to acetylcholine and bradykinin, vasodilatation produced by the agonists appears to be mediated primarily by nitric oxide. 5-N,N-Hexamethyleneamiloride, an inhibitor of Na+/H+ exchanger, did not affect baseline diameter of the basilar artery, but inhibited vasodilatation in response to acetylcholine and bradykinin, without affecting vasodilatation produced by sodium nitroprusside. FR 183998, another inhibitor of Na+/H+ exchanger, also attenuated acetylcholine-induced dilatation of the basilar artery without affecting vasodilatation in response to sodium nitroprusside. Monomethylamine hydrochloride, which produces intracellular alkalinization, enhanced acetylcholine-induced dilatation of the basilar artery in the presence of 5-N,N-hexamethyleneamiloride. These results suggest that intracellular alkalinization produced by activation of Na+/H+ exchanger may enhance nitric oxide production in the basilar arterial endothelium and thereby contribute to dilator responses of the artery in vivo. (C) 2001 Elsevier Science B.V. All rights reserved.