The role of Holliday junction resolvases in the repair of spontaneous and induced DNA damage

被引:43
作者
Agmon, Neta [1 ]
Yovel, Moran [1 ]
Harari, Yaniv [1 ]
Liefshitz, Batia [1 ]
Kupiec, Martin [1 ]
机构
[1] Tel Aviv Univ, Dept Mol Microbiol & Biotechnol, IL-69979 Ramat Aviv, Israel
关键词
DOUBLE-STRAND BREAKS; STRUCTURE-SPECIFIC NUCLEASES; SACCHAROMYCES-CEREVISIAE; HOMOLOGOUS RECOMBINATION; MUS81/MMS4; ENDONUCLEASE; POSTREPLICATION REPAIR; MITOTIC RECOMBINATION; MEIOTIC RECOMBINATION; NUCLEOTIDE-SEQUENCE; FUNCTIONAL OVERLAP;
D O I
10.1093/nar/gkr277
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA double-strand breaks (DSBs) and other lesions occur frequently during cell growth and in meiosis. These are often repaired by homologous recombination (HR). HR may result in the formation of DNA structures called Holliday junctions (HJs), which need to be resolved to allow chromosome segregation. Whereas HJs are present in most HR events in meiosis, it has been proposed that in vegetative cells most HR events occur through intermediates lacking HJs. A recent screen in yeast has shown HJ resolution activity for a protein called Yen1, in addition to the previously known Mus81/Mms4 complex. Yeast strains deleted for both YEN1 and MMS4 show a reduction in growth rate, and are very sensitive to DNA-damaging agents. In addition, we investigate the genetic interaction of yen1 and mms4 with mutants defective in different repair pathways. We find that in the absence of Yen1 and Mms4 deletion of RAD1 or RAD52 have no further effect, whereas additional sensitivity is seen if RAD51 is deleted. Finally, we show that yeast cells are unable to carry out meiosis in the absence of both resolvases. Our results show that both Yen1 and Mms4/Mus81 play important (although not identical) roles during vegetative growth and in meiosis.
引用
收藏
页码:7009 / 7019
页数:11
相关论文
共 59 条
[1]   Analysis of repair mechanism choice during homologous recombination [J].
Agmon, Neta ;
Pur, Shiri ;
Liefshitz, Batia ;
Kupiec, Martin .
NUCLEIC ACIDS RESEARCH, 2009, 37 (15) :5081-5092
[2]   Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae [J].
Aylon, Y ;
Liefshitz, B ;
Bitan-Banin, G ;
Kupiec, M .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (04) :1403-1417
[3]   NUCLEOTIDE-SEQUENCE AND TRANSCRIPTIONAL REGULATION OF THE YEAST RECOMBINATIONAL REPAIR GENE RAD51 [J].
BASILE, G ;
AKER, M ;
MORTIMER, RK .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) :3235-3246
[4]   An atypical topoisomerase II from archaea with implications for meiotic recombination [J].
Bergerat, A ;
deMassy, B ;
Gadelle, D ;
Varoutas, PC ;
Nicolas, A ;
Forterre, P .
NATURE, 1997, 386 (6623) :414-417
[5]   Functional overlap between the structure-specific nucleases Yen1 and Mus81-Mms4 for DNA-damage repair in S. cerevisiae [J].
Blanco, Miguel G. ;
Matos, Joao ;
Rass, Ulrich ;
Ip, Stephen C. Y. ;
West, Stephen C. .
DNA REPAIR, 2010, 9 (04) :394-402
[6]   Mus81-Eme1 are essential components of a Holliday junction resolvase [J].
Boddy, MN ;
Gaillard, PHL ;
McDonald, WH ;
Shanahan, P ;
Yates, JR ;
Russell, P .
CELL, 2001, 107 (04) :537-548
[7]   MEIOTIC RECOMBINATION IN YEAST - ALTERATION BY MULTIPLE HETEROZYGOSITIES [J].
BORTS, RH ;
HABER, JE .
SCIENCE, 1987, 237 (4821) :1459-1465
[8]   The checkpoint response to replication stress [J].
Branzei, Dana ;
Foiani, Marco .
DNA REPAIR, 2009, 8 (09) :1038-1046
[9]   SUMOylation regulates Rad18-mediated template switch [J].
Branzei, Dana ;
Vanoli, Fabio ;
Foiani, Marco .
NATURE, 2008, 456 (7224) :915-920
[10]   Double Holliday junctions are intermediates of DNA break repair [J].
Bzymek, Malgorzata ;
Thayer, Nathaniel H. ;
Oh, Steve D. ;
Kleckner, Nancy ;
Hunter, Neil .
NATURE, 2010, 464 (7290) :937-U162