Pronounced conformational changes following agonist activation of the M3 muscarinic acetylcholine receptor

被引:27
作者
Han, SJ
Hamdan, FF
Kim, SK
Jacobson, KA
Brichta, L
Bloodworth, LM
Li, JH
Wess, J
机构
[1] NIDDK, Mol Signaling Sect, Bioorgan Chem Lab, NIH, Bethesda, MD 20892 USA
[2] NIDDK, Mol Recognit Sect, Bioorgan Chem Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1074/jbc.M500379200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The conformational changes that convert G protein-coupled receptors (GPCRs) activated by diffusible ligands from their resting into their active states are not well understood at present. To address this issue, we used the M-3 muscarinic acetylcholine receptor, a prototypical class A GPCR, as a model system, employing a recently developed disulfide cross-linking strategy that allows the formation of disulfide bonds using Cys-substituted mutant M-3 muscarinic receptors present in their native membrane environment. In the present study, we generated and analyzed 30 double Cys mutant M-3 receptors, all of which contained one Cys substitution within the C-terminal portion of transmembrane domain (TM) VII (Val-541 to Ser-546) and another one within the C-terminal segment of TM I (Val-88 to Phe-92). Following their transient expression in COS-7 cells, all mutant receptors were initially characterized in radioligand binding and second messenger assays (carbachol-induced stimulation of phosphatidylinositol hydrolysis). This analysis showed that all 30 double Cys mutant M-3 receptors were able to bind muscarinic ligands with high affinity and retained the ability to stimulate G proteins with high efficacy. In situ disulfide cross-linking experiments revealed that the muscarinic agonist, carbachol, promoted the formation of cross-links between specific Cys pairs. The observed pattern of disulfide cross-links, together with receptor modeling studies, strongly suggested that M-3 receptor activation induces a major rotational movement of the C-terminal portion of TM VII and increases the proximity of the cytoplasmic ends of TM I and VII. These findings should be of relevance for other family A GPCRs.
引用
收藏
页码:24870 / 24879
页数:10
相关论文
共 57 条
[1]   Light-induced exposure of the cytoplasmic end of transmembrane helix seven in rhodopsin [J].
Abdulaev, NG ;
Ridge, KD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :12854-12859
[2]   Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Cai, KW ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1999, 38 (25) :7931-7937
[3]   Structure and function in rhodopsin: Mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1 [J].
Altenbach, C ;
Klein-Seetharaman, J ;
Cai, KW ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 2001, 40 (51) :15493-15500
[4]   Structure and function in rhodopsin: Mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8 [J].
Altenbach, C ;
Cai, KW ;
Klein-Seetharaman, J ;
Khorana, FG ;
Hubbell, WL .
BIOCHEMISTRY, 2001, 40 (51) :15483-15492
[5]   Dimerization: An emerging concept for G protein-coupled receptor ontogeny and function [J].
Angers, S ;
Salahpour, A ;
Bouvier, M .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2002, 42 :409-435
[6]   Structural mimicry in G protein-coupled receptors: Implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors [J].
Ballesteros, JA ;
Shi, L ;
Javitch, JA .
MOLECULAR PHARMACOLOGY, 2001, 60 (01) :1-19
[7]  
Ballesteros JA, 1995, Methods Neurosci, V25, P366, DOI [DOI 10.1016/S1043-9471(05)80049-7, 10.1016/S1043-9471(05)80049-7]
[8]   Molecular tinkering of G protein-coupled receptors: an evolutionary success [J].
Bockaert, J ;
Pin, JP .
EMBO JOURNAL, 1999, 18 (07) :1723-1729
[9]   IDENTIFICATION OF A FAMILY OF MUSCARINIC ACETYLCHOLINE-RECEPTOR GENES [J].
BONNER, TI ;
BUCKLEY, NJ ;
YOUNG, AC ;
BRANN, MR .
SCIENCE, 1987, 237 (4814) :527-532
[10]   Pharmacology of muscarinic receptor subtypes constitutively activated by G proteins [J].
Burstein, ES ;
Spalding, TA ;
Brann, MR .
MOLECULAR PHARMACOLOGY, 1997, 51 (02) :312-319