Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression

被引:1601
作者
Drevets, Wayne C. [1 ]
Price, Joseph L. [2 ]
Furey, Maura L. [1 ]
机构
[1] NIMH, Sect Neuroimaging Mood & Anxiety Disorders, NIH, DIRP, Bethesda, MD 20892 USA
[2] Washington Univ, Dept Anat & Neurobiol, Sch Med, St Louis, MO 63110 USA
关键词
D O I
10.1007/s00429-008-0189-x
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger "default system" of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies.
引用
收藏
页码:93 / 118
页数:26
相关论文
共 250 条
[1]  
Alonso G, 2000, GLIA, V31, P219, DOI 10.1002/1098-1136(200009)31:3<219::AID-GLIA30>3.0.CO
[2]  
2-R
[3]   AMYGDALO-CORTICAL PROJECTIONS IN THE MONKEY (MACACA-FASCICULARIS) [J].
AMARAL, DG ;
PRICE, JL .
JOURNAL OF COMPARATIVE NEUROLOGY, 1984, 230 (04) :465-496
[4]   RETROGRADE TRANSPORT OF D-[H-3]-ASPARTATE INJECTED INTO THE MONKEY AMYGDALOID COMPLEX [J].
AMARAL, DG ;
INSAUSTI, R .
EXPERIMENTAL BRAIN RESEARCH, 1992, 88 (02) :375-388
[5]  
[Anonymous], FUNCTION BASAL GANGL
[6]  
[Anonymous], 2001, WORLD HLTH REP
[7]  
[Anonymous], 1994, AM PSYCHIATR ASSOC
[8]   Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder [J].
Aston, C ;
Jiang, L ;
Sokolov, BP .
MOLECULAR PSYCHIATRY, 2005, 10 (03) :309-322
[9]   Amygdala input to medial prefrontal cortex (mPFC) in the rat: A light and electron microscope study [J].
Bacon, SJ ;
Headlam, AJN ;
Gabbott, PLA ;
Smith, AD .
BRAIN RESEARCH, 1996, 720 (1-2) :211-219
[10]  
Banasr Mounira, 2007, CNS & Neurological Disorders-Drug Targets, V6, P311, DOI 10.2174/187152707783220929