An Enhanced Microgrid Load Demand Sharing Strategy

被引:336
作者
He, Jinwei [1 ]
Li, Yun Wei [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
关键词
Distributed generation (DG); droop control; low-bandwidth communication; microgrid; reactive power compensation; real and reactive power sharing; PARALLEL INVERTERS; CONTROLLER; OPERATION; DESIGN;
D O I
10.1109/TPEL.2012.2190099
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the operation of autonomous microgrids, an important task is to share the load demand using multiple distributed generation (DG) units. In order to realize satisfied power sharing without the communication between DG units, the voltage droop control and its different variations have been reported in the literature. However, in a low-voltage microgrid, due to the effects of non-trivial feeder impedance, the conventional droop control is subject to the real and reactive power coupling and steady-state reactive power sharing errors. Furthermore, complex microgrid configurations (looped or mesh networks) often make the reactive power sharing more challenging. To improve the reactive power sharing accuracy, this paper proposes an enhanced control strategy that estimates the reactive power control error through injecting small real power disturbances, which is activated by the low-bandwidth synchronization signals from the central controller. At the same time, a slow integration term for reactive power sharing error elimination is added to the conventional reactive power droop control. The proposed compensation method achieves accurate reactive power sharing at the steady state, just like the performance of real power sharing through frequency droop control. Simulation and experimental results validate the feasibility of the proposed method.
引用
收藏
页码:3984 / 3995
页数:12
相关论文
共 22 条
[1]   A Cooperative Imbalance Compensation Method for Distributed-Generation Interface Converters [J].
Cheng, Po-Tai ;
Chen, Chien-An ;
Lee, Tung-Lin ;
Kuo, Shen-Yuan .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2009, 45 (02) :805-815
[2]  
Coelho E. A. A., 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), P2180, DOI 10.1109/IAS.1999.798756
[3]   Small-signal stability for parallel-connected inverters in stand-alone AC supply systems [J].
Coelho, EAA ;
Cortizo, PC ;
Garcia, PFD .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2002, 38 (02) :533-542
[4]  
Corradini L, 2010, IEEE T POWER ELECTR, V25, P2806
[5]   A voltage and frequency droop control method for parallel inverters [J].
De Brabandere, Karel ;
Bolsens, Bruno ;
Van den Keybus, Jeroen ;
Woyte, Achim ;
Driesen, Johan ;
Belmans, Ronnie .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2007, 22 (04) :1107-1115
[6]   Decentralized Parallel Operation of Inverters Sharing Unbalanced and Nonlinear Loads [J].
De, Dipankar ;
Ramanarayanan, Venkataramanan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (12) :2995-3025
[7]   Output impendance design of parallel-connected UPS inverters with wireless load-sharing control [J].
Guerrero, JM ;
de Vicuña, LG ;
Matas, J ;
Castilla, M ;
Miret, J .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2005, 52 (04) :1126-1135
[8]   A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems [J].
Guerrero, JM ;
de Vicuña, LG ;
Matas, J ;
Castilla, M ;
Miret, J .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2004, 19 (05) :1205-1213
[9]   Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization [J].
Guerrero, Josep M. ;
Vasquez, Juan C. ;
Matas, Jose ;
Garci de Vicuna, Luis ;
Castilla, Miguel .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (01) :158-172
[10]   Smart Grid Technologies: Communication Technologies and Standards [J].
Gungor, Vehbi C. ;
Sahin, Dilan ;
Kocak, Taskin ;
Ergut, Salih ;
Buccella, Concettina ;
Cecati, Carlo ;
Hancke, Gerhard P. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2011, 7 (04) :529-539