Chaotic nucleation of metastable domains

被引:15
作者
Argentina, M
Coullet, P
机构
[1] Institut de Non Lineare de Nice, UMR CNRS 129, Valbonne, 06560
关键词
D O I
10.1103/PhysRevE.56.R2359
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe a cavitation process that consists of chaotic nucleation of metastable domains. It can be generically observed in spatially extended nonequilibrium systems, whenever they exhibit bistability between a stationary and an oscillatory state, close to the Andronov homoclinic bifurcation, which leads to the disappearance df the former. In the bistable regime, the modulational instability of the homogenenous oscillations leads to inhomogenous nucleation of the stationary phase.
引用
收藏
页码:R2359 / R2362
页数:4
相关论文
共 24 条
[1]  
Andronov A. A., 1973, QUALITATIVE THEORY 2
[2]  
ARGENTINA M, UNPUB
[3]   ASYMPTOTIC CHAOS [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA ;
TRESSER, C .
PHYSICA D, 1985, 14 (03) :327-347
[4]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[5]   TRANSITION TO TURBULENCE VIA SPATIOTEMPORAL INTERMITTENCY [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :112-115
[6]  
CHOW SN, 1995, NORMAL FORMS BIFURCA
[7]   DEFECT-MEDIATED TURBULENCE [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (14) :1619-1622
[8]   INSTABILITIES OF ONE-DIMENSIONAL CELLULAR-PATTERNS [J].
COULLET, P ;
IOOSS, G .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :866-869
[9]  
GUCKENHEIMER J, 1983, APPLIED MATH SCI, V41
[10]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2