Chaos and spatial correlations for dipolar eigenproblems

被引:57
作者
Stockman, MI
机构
[1] Department of Physics and Astronomy, Georgia State University, Atlanta
关键词
D O I
10.1103/PhysRevLett.79.4562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spatial-correlation properties of the wave functions (eigenvectors) of a spin-one eigenproblem for dipole interaction is studied for random geometries of the underlying system. This problem describes, in particular, polar excitations (''plasmons'') of large clusters. In contrast to Berry's conjecture of quantum chaos for massive particles. we have found long-range spatial correlations for wave functions (eigenvectors). For fractal systems, not only individual eigenvectors are chaotic, but also the amplitude-correlation function exhibits an unusual chaotic, ''turbulent'' behavior that is preserved by ensemble averaging. For disordered nonfractal systems, the eigenvectors show a mesoscopic delocalization transition different from the Anderson transition.
引用
收藏
页码:4562 / 4565
页数:4
相关论文
共 14 条
[1]   UNIVERSAL PARAMETRIC CORRELATIONS OF EIGENFUNCTIONS IN CHAOTIC AND DISORDERED-SYSTEMS [J].
ALHASSID, Y ;
ATTIAS, H .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4635-4638
[2]   Quantum chaos, irreversible classical dynamics, and random matrix theory [J].
Andreev, AV ;
Agam, O ;
Simons, BD ;
Altshuler, BL .
PHYSICAL REVIEW LETTERS, 1996, 76 (21) :3947-3950
[3]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[4]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[6]   Long-range correlations in the wave functions of chaotic systems [J].
Falko, VI ;
Efetov, KB .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :912-915
[7]   SCALING OF KINETICALLY GROWING CLUSTERS [J].
KOLB, M ;
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW LETTERS, 1983, 51 (13) :1123-1126
[8]  
LIFSHITS EM, 1978, STAT PHYSICS 2
[9]  
MARKEL VA, 1990, ZH EKSP TEOR FIZ+, V98, P819
[10]   THEORY AND NUMERICAL-SIMULATION OF OPTICAL-PROPERTIES OF FRACTAL CLUSTERS [J].
MARKEL, VA ;
MURATOV, LS ;
STOCKMAN, MI ;
GEORGE, TF .
PHYSICAL REVIEW B, 1991, 43 (10) :8183-8195