Semi-synthetic mammalian gene regulatory networks

被引:35
作者
Kramer, BP [1 ]
Fischer, M [1 ]
Fussenegger, M [1 ]
机构
[1] ETH Honggerberg, Swiss Fed Inst Technol, ICB, CH-8093 Zurich, Switzerland
关键词
synthetic biology; synthetic gene networks; hypoxia; gene regulation; erythromycin; pristinamycin; tetracycline; CHO; HT-1080; gene herapy;
D O I
10.1016/j.ymben.2005.02.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In recent years gene network engineers have celebrated spectacular success: Genetic devices such as epigenetic toggle switches and oscillating networks have been engineered and pioneered a new ever-increasing scientific community known as synthetic biology. While synthetic biology was until recently restricted to network assembly and testing in prokaryotes, decisive advances have been achieved in eukaryotic systems based on current availability of different human-compatible transgene control technologies. Most prominent examples include the epigenetic gene network enabling metastable fully inheritable transgene expression states in mice, artificial regulatory cascades managing multi-level expression control and Boolean-type BioLogic gates supporting near-digital expression readout. The majority of transgene control networks available to date are fully synthetic and integrate artificial extracellular signals in a desired host metabolism-independent manner. Yet, in order to develop their full anticipated therapeutic potential, synthetic transgene control circuits need to be well interconnected with the host cell's regulatory networks in order to enable physiologic control of prosthetic molecular expression units. We have designed three semi-synthetic transcription control networks able to integrate physiologic oxygen levels and artificial antibiotic signals to produce expression readout with NOT IF or NOR-type Boolean logic or discrete multi-level control of several intracellular and secreted model product proteins. Subtle differences in the regulation performance of the endogenous oxygen-sensing system in CHO-K1 and human HT-1080 switched the semi-synthetic network's readout from a classic four-level (high, medium, low, basal) regulatory cascade to a network enabling six discrete transgene expression levels. These findings are in excellent correspondence with a mathematical model. Prosthetic networks, precisely embedded in host regulatory networks and co-fine-tuned by physiologic as well as pharmacologic input signals, will foster future advances in gene therapy and tissue engineering. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 26 条
[1]   Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli [J].
Atkinson, MR ;
Savageau, MA ;
Myers, JT ;
Ninfa, AJ .
CELL, 2003, 113 (05) :597-607
[2]   Noise in eukaryotic gene expression [J].
Blake, WJ ;
Kærn, M ;
Cantor, CR ;
Collins, JJ .
NATURE, 2003, 422 (6932) :633-637
[3]   Attenuation of green fluorescent protein half-life in mammalian cells [J].
Corish, P ;
Tyler-Smith, C .
PROTEIN ENGINEERING, 1999, 12 (12) :1035-1040
[4]   A synthetic oscillatory network of transcriptional regulators [J].
Elowitz, MB ;
Leibler, S .
NATURE, 2000, 403 (6767) :335-338
[5]   Streptogramin-based gene regulation systems for mammalian cells [J].
Fussenegger, M ;
Morris, RP ;
Fux, C ;
Rimann, M ;
von Stockar, B ;
Thompson, CJ ;
Bailey, JE .
NATURE BIOTECHNOLOGY, 2000, 18 (11) :1203-1208
[6]   Toward higher order control modalities in mammalian cells - Independent adjustment of two different gene activities [J].
Fux, C ;
Fussenegger, M .
BIOTECHNOLOGY PROGRESS, 2003, 19 (01) :109-120
[7]   Construction of a genetic toggle switch in Escherichia coli [J].
Gardner, TS ;
Cantor, CR ;
Collins, JJ .
NATURE, 2000, 403 (6767) :339-342
[8]   TIGHT CONTROL OF GENE-EXPRESSION IN MAMMALIAN-CELLS BY TETRACYCLINE-RESPONSIVE PROMOTERS [J].
GOSSEN, M ;
BUJARD, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (12) :5547-5551
[9]   Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation [J].
Jaakkola, P ;
Mole, DR ;
Tian, YM ;
Wilson, MI ;
Gielbert, J ;
Gaskell, SJ ;
von Kriegsheim, A ;
Hebestreit, HF ;
Mukherji, M ;
Schofield, CJ ;
Maxwell, PH ;
Pugh, CW ;
Ratcliffe, PJ .
SCIENCE, 2001, 292 (5516) :468-472
[10]   Programmable cells:: Interfacing natural and engineered gene networks [J].
Kobayashi, H ;
Kærn, M ;
Araki, M ;
Chung, K ;
Gardner, TS ;
Cantor, CR ;
Collins, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (22) :8414-8419