Pleiotropic effects of fatty acids on pancreatic β-cells

被引:124
作者
Haber, EP [1 ]
Ximenes, HMA [1 ]
Procópio, J [1 ]
Carvalho, CRO [1 ]
Curi, R [1 ]
Carpinelli, AR [1 ]
机构
[1] Univ Sao Paulo, Dept Fisiol & Biofis, Inst Ciencias Biomed, BR-05508900 Sao Paulo, Brazil
关键词
D O I
10.1002/jcp.10187
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Hyperlipidemia is frequently associated with insulin resistance states as found in type 2 diabetes and obesity. Effects of free fatty acids (FFA) on pancreatic beta-cells have long been recognized. Acute exposure of the pancreatic beta-cell to FFA results in an increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. We recently showed that palmitate augments insulin release in the presence of non-stimulatory concentrations of glucose. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release. These results imply that physiological plasma levels of FFA are important for beta-cell function. Although, it has been accepted that fatty acid oxidation is necessary for its stimulation of insulin secretion, the possible mechanisms by which fatty acids (FA) affect insulin secretion are discussed in this review. Long-chain acyl-CoA (LC-CoA) controls several aspects of the beta-cell function including activation of certain types of protein kinase C (PKC), modulation of ion channels, protein acylation, ceramide- and/or nitric oxide (NO)-mediated apoptosis, and binding to nuclear transcriptional factors. The present review also describes the possible effects of FA on insulin signaling. We showed for the first time that acute exposure of islets to palmitate upregulates the intracellular insulin-signaling pathway in pancreatic islets. Another aspect considered in this review is the source of FA for pancreatic islets. In addition to be exported to the medium, lipids can be transferred from leukocytes (macrophages) to pancreatic islets in co-culture. This process consists an additional source of FA that may plays a significant role to regulate insulin secretion.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 172 条
[1]  
Abumrad N, 1998, J LIPID RES, V39, P2309
[2]   ATP-SENSITIVE K+ CHANNEL-INDEPENDENT GLUCOSE ACTION IN RAT PANCREATIC BETA-CELL [J].
AIZAWA, T ;
SATO, Y ;
ISHIHARA, F ;
TAGUCHI, N ;
KOMATSU, M ;
SUZUKI, N ;
HASHIZUME, K ;
YAMADA, T .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (03) :C622-C627
[3]  
ALLAND L, 1994, J BIOL CHEM, V269, P16701
[4]   IDENTIFICATION OF PHOSPHATIDYLINOSITOL 3,4,5-TRISPHOSPHATE IN PANCREATIC-ISLETS AND INSULIN-SECRETING BETA-CELLS [J].
ALTER, CA ;
WOLF, BA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 208 (01) :190-197
[5]   Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion - A re-evaluation of the long-chain acyl-CoA hypothesis [J].
Antinozzi, PA ;
Segall, L ;
Prentki, M ;
McGarry, JD ;
Newgard, CB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (26) :16146-16154
[6]   Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in β-cells [J].
Aspinwall, CA ;
Qian, WJ ;
Roper, MG ;
Kulkarni, RN ;
Kahn, CR ;
Kennedy, RT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :22331-22338
[7]   Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic beta-cell line INS-1 [J].
AssimacopoulosJeannet, F ;
Thumelinn, S ;
Roche, E ;
Esser, V ;
McGarry, JD ;
Prentki, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (03) :1659-1664
[8]   Epoxyeicosatrienoic acids activate a high-conductance, Ca2+-dependent K+ channel on pig coronary artery endothelial cells [J].
Baron, A ;
Frieden, M ;
Beny, JL .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 504 (03) :537-543
[9]   Islet β cell expression of constitutively active Akt1/PKBα induces striking hypertrophy, hyperplasia, and hyperinsulinemia [J].
Bernal-Mizrachi, E ;
Wen, W ;
Stahlhut, S ;
Welling, CM ;
Permutt, MA .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (11) :1631-1638
[10]   METABOLISM OF LIPIDS IN MOUSE PANCREATIC-ISLETS - OXIDATION OF FATTY-ACIDS AND KETONE-BODIES [J].
BERNE, C .
BIOCHEMICAL JOURNAL, 1975, 152 (03) :661-666