A matrix ansatz for the diffusion of an impurity in the asymmetric exclusion process

被引:13
作者
Boutillier, C
François, P
Mallick, K
Mallick, S
机构
[1] Univ Paris 11, UMR 8628, Math Lab Orsay, F-91405 Orsay 05, France
[2] Univ Paris 06, Ecole Normale Super, Lab Phys Stat, Paris, France
[3] Univ Paris 07, Ecole Normale Super, Lab Phys Stat, Paris, France
[4] CEA Saclay, CNRS,DSM,SPht, Unite Rech, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[5] Ctr Sci Orsay, Inst Opt, F-91403 Orsay, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 46期
关键词
D O I
10.1088/0305-4470/35/46/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the fluctuations of the position of an impurity in the asymmetric exclusion process on a ring with an arbitrary number of particles and holes. The steady state of this model is exactly known and four different phases appear in the limit of a large system. We calculate the diffusion constant of the impurity by using a matrix product method and also obtain a representation for unequal time correlation functions. We show that our results found by the matrix ansatz agree with those obtained previously by the Bethe ansatz.
引用
收藏
页码:9703 / 9730
页数:28
相关论文
共 38 条
[1]   N-species stochastic models with boundaries and quadratic algebras [J].
Alcaraz, FC ;
Dasmahapatra, S ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03) :845-878
[2]   SHOCKS IN THE ASYMMETRIC EXCLUSION PROCESS [J].
ANDJEL, ED ;
BRAMSON, MD ;
LIGGETT, TM .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (02) :231-247
[3]   COMPUTER-SIMULATION OF SHOCK-WAVES IN THE COMPLETELY ASYMMETRIC SIMPLE EXCLUSION PROCESS [J].
BOLDRIGHINI, C ;
COSIMI, G ;
FRIGIO, S ;
NUNES, MG .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :611-623
[4]   Exact diffusion constant for the one-dimensional partially asymmetric exclusion model [J].
Derrida, B ;
Mallick, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (04) :1031-1046
[5]   Exact large deviation function in the asymmetric exclusion process [J].
Derrida, B ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :209-213
[6]   An exactly soluble non-equilibrium system: The asymmetric simple exclusion process [J].
Derrida, B .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 301 (1-3) :65-83
[7]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[8]   EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES [J].
DERRIDA, B ;
JANOWSKY, SA ;
LEBOWITZ, JL ;
SPEER, ER .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) :813-842
[9]   EXACT DIFFUSION CONSTANT FOR ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODELS [J].
DERRIDA, B ;
EVANS, MR ;
MUKAMEL, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19) :4911-4918
[10]   EXACT DIFFUSION CONSTANT OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
EVANS, MR ;
MALLICK, K .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (5-6) :833-874