Green fluorescent protein-like proteins in reef anthozoa animals

被引:70
作者
Miyawaki, A [1 ]
机构
[1] RIKEN, Brain Sci Inst, Adv Technol Dev Ctr, Lab Cell Funct Dynam, Wako, Saitama 3510198, Japan
关键词
GFP; bioluminescence; anthozoa; RFP; photoconversion;
D O I
10.1247/csf.27.343
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Green fluorescent protein (GFP) from the bioluminescent jellyflsh Aequorea victoria has become an important tool in molecular and cellular biology as a transcriptional reporter, fusion tag, and biosensor. Most significantly, it encodes a chromophore intrinsically within its protein sequence, obviating the need for external substrates or cofactors and enabling the genetic encoding of strong fluorescence. Mutagenesis studies have generated GFP variants with new colors, improved fluorescence and other biochemical properties. In parallel, GFPs and GFP-like molecules have been cloned from other organisms, including the bioluminescent sea pansy Renilla reniformis and other non-bioluminescent Anthozoa animals. In the jellyfish and sea pansy, the GFPs are coupled to their chemoluminescence. Instead of emitting the blue light generated by aequorin and luciferase, the GFPs absorb their energy of primary emission and emit green light, which travels farther in the sea. In contrast, GFP-like proteins in reef Anthozoa are thought to play a role in photoprotection of their symbiotic zooxanthellae in shallow water; they transform absorbed UV radiation contained in sunlight into longer fluorescence wavelengths (Salih, A., Larkum, A., Cox, G., Kuhl, M., and Hoegh-Guldberg, O. 2000. Nature, 408: 850-853). In this review, I will describe both the biological and practical aspects of Anthozoan GFP-like proteins, many of which will be greatly improved in utility and commercially available before long. The ubiquity of these molecular tools makes it important to appreciate the interplay between sunlight and GFP-like proteins of Anthozoan animals, and to consider the optimal use of these unique proteins in biological studies.
引用
收藏
页码:343 / 347
页数:5
相关论文
共 22 条
[1]   An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein [J].
Ando, R ;
Hama, H ;
Yamamoto-Hino, M ;
Mizuno, H ;
Miyawaki, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12651-12656
[2]   Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral [J].
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :11984-11989
[3]   Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) [J].
Bevis, BJ ;
Glick, BS .
NATURE BIOTECHNOLOGY, 2002, 20 (01) :83-87
[4]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882
[5]   Photoactivation turns green fluorescent protein red [J].
Elowitz, MB ;
Surette, MG ;
Wolf, PE ;
Stock, J ;
Leibler, S .
CURRENT BIOLOGY, 1997, 7 (10) :809-812
[6]   The structure of the chromophore within DsRed, a red fluorescent protein from coral [J].
Gross, LA ;
Baird, GS ;
Hoffman, RC ;
Baldridge, KK ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :11990-11995
[7]   GFP-like chromoproteins as a source of far-red fluorescent proteins [J].
Gurskaya, NG ;
Fradkov, AF ;
Terskikh, A ;
Matz, MV ;
Labas, YA ;
Martynov, VI ;
Yanushevich, YG ;
Lukyanov, KA ;
Lukyanov, SA .
FEBS LETTERS, 2001, 507 (01) :16-20
[8]   Diversity and evolution of the green fluorescent protein family [J].
Labas, YA ;
Gurskaya, NG ;
Yanushevich, YG ;
Fradkov, AF ;
Lukyanov, KA ;
Lukyanov, SA ;
Matz, MV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4256-4261
[9]   Studying protein dynamics in living cells [J].
Lippincott-Schwartz, J ;
Snapp, E ;
Kenworthy, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (06) :444-456
[10]   Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog [J].
Lukyanov, KA ;
Fradkov, AF ;
Gurskaya, NG ;
Matz, MV ;
Labas, YA ;
Savitsky, AP ;
Markelov, ML ;
Zaraisky, AG ;
Zhao, XN ;
Fang, Y ;
Tan, WY ;
Lukyanov, SA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :25879-25882