Fused-ring Electron Acceptors for Organic Solar Cells

被引:23
作者
Dai, Shui-xing [1 ]
Zhan, Xiao-wei [1 ]
机构
[1] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
来源
ACTA POLYMERICA SINICA | 2017年 / 11期
关键词
Fused-ring electron acceptor; Nonfullerene acceptor; Organic solar cell; NON-FULLERENE ACCEPTOR; SMALL-MOLECULE; BANDGAP POLYMER; DIIMIDE; PERFORMANCE; EFFICIENCY; PERYLENE; INDACENODITHIOPHENE; COPOLYMERS; DIKETOPYRROLOPYRROLE;
D O I
10.11777/j.issn1000-3304.2017.17214
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nonfullerene organic solar cell (OPV) is one of the hottest frontiers in chemistry and materials science. China has been leading this hot frontier, and Chinese researchers have made great contribution to this research field. We proposed a novel concept - fused-ring electron acceptor (FREA), established a brand-new, high-performance nonfullerene acceptor system, and invented star molecule ITIC. These FREAs show some advantages: (1) they have high electron mobility similar to those of fullerenes; (2) they exhibit strong and broad absorption, especially in the 700 - 1000 nm range, and can match with wide-bandgap donor materials to achieve complementary absorption; (3) their energy level can be tuned and thus they match with various high-performance electron donors; (4) their crystallinity and film morphology can be tuned; (5) their synthesis is easy to scale up. Our original and pioneering work has received extensive attention. FREAs are now commercial available. Many well-known research groups across the world have already utilized these FREAs to fabricate high-efficiency OPV. FREA-based OPV now has achieved a power conversation efficiency of 13% -14%, surpassing the fullerene counterpart. Moreover, the FREA-based OPV exhibits better device stability than the fullerene-based counterpart. The emergence of ITIC-like FREAs has overturned predominant position of fullerene acceptor in OPV and is inaugurating the nonfullerene OPV era. In this review, we summarize our progress of FREA design and application in OPV, and give an outlook of the FREAs. We first introduce the background information, concept and working mechanism of OPV; then the advantages and disadvantages of fullerene acceptors are compared with nonfullerene acceptors; and the concept and merits of FREAs are finally discussed. The main text focuses on fused-ring core engineering, electron-withdrawing group engineering and side chain engineering, and we emphasize effects of electron-donating fused-ring cores, electron-withdrawing end groups and side chains on solubility, crystallinity, energy levels, absorption spectra, electron mobilities and photovoltaic properties of FREAs.
引用
收藏
页码:1706 / 1714
页数:9
相关论文
共 54 条
[1]   Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolyl-methylenemalononitrile for polymer solar cells [J].
Bai, Huitao ;
Wu, Yao ;
Wang, Yifan ;
Wu, Yang ;
Li, Rong ;
Cheng, Pei ;
Zhang, Mingyu ;
Wang, Jiayu ;
Ma, Wei ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) :20758-20766
[2]   An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells [J].
Bai, Huitao ;
Wang, Yifan ;
Cheng, Pei ;
Wang, Jiayu ;
Wu, Yao ;
Hou, Jianhui ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) :1910-1914
[3]   A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells [J].
Bai, Huitao ;
Cheng, Pei ;
Wang, Yifan ;
Ma, Lanchao ;
Li, Yongfang ;
Zhu, Daoben ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (03) :778-784
[4]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[5]   Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency [J].
Bin, Haijun ;
Zhang, Zhi-Guo ;
Gao, Liang ;
Chen, Shanshan ;
Zhong, Lian ;
Xue, Lingwei ;
Yang, Changduk ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4657-4664
[6]   Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic Devices [J].
Chen, Junwu ;
Cao, Yong .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1709-1718
[7]   High Performance Photovoltaic Applications Using Solution-Processed Small Molecules [J].
Chen, Yongsheng ;
Wan, Xiangjian ;
Long, Guankui .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (11) :2645-2655
[8]   Realizing Small Energy Loss of 0.55 eV, High Open-Circuit Voltage > 1 V and High Efficiency > 10% in Fullerene-Free Polymer Solar Cells via Energy Driver [J].
Cheng, Pei ;
Zhang, Mingyu ;
Lau, Tsz-Ki ;
Wu, Yao ;
Jia, Boyu ;
Wang, Jiayu ;
Yan, Cenqi ;
Qin, Meng ;
Lu, Xinhui ;
Zhan, Xiaowei .
ADVANCED MATERIALS, 2017, 29 (11)
[9]   Stability of organic solar cells: challenges and strategies [J].
Cheng, Pei ;
Zhan, Xiaowei .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (09) :2544-2582
[10]   Versatile third components for efficient and stable organic solar cells [J].
Cheng, Pei ;
Zhan, Xiaowei .
MATERIALS HORIZONS, 2015, 2 (05) :462-485