Using colour, texture, and hierarchial segmentation for high-resolution remote sensing

被引:102
作者
Trias-Sanz, Roger [1 ,2 ]
Stamon, Georges [2 ]
Louchet, Jean [3 ]
机构
[1] Inst Geog Natl, F-94165 St Mande, France
[2] Univ Paris 05, SIP CRIP5, F-75006 Paris, France
[3] INRIA, Equipe COMPLEX, F-78153 Rocquencourt, France
关键词
segmentation; hierarchical; colour; cartography; land cover;
D O I
10.1016/j.isprsjprs.2007.08.005
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Image segmentation can be performed on raw radiometric data, but also on transformed colour spaces, or, for high-resolution images, on textural features. We review several existing colour space transformations and textural features, and investigate which combination of inputs gives best results for the task of segmenting high-resolution multispectral aerial images of rural areas into its constituent cartographic objects such as fields, orchards, forests, or lakes, with a hierarchical segmentation algorithm. A method to quantitatively evaluate the quality of a hierarchical image segmentation is presented, and the behaviour of the segmentation algorithm for various parameter sets is also explored. (C) 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:156 / 168
页数:13
相关论文
共 31 条
[1]  
ANGULO J, 2003, MORPHOLOGIE MATH COU
[2]  
[Anonymous], 2006, MANUALE EC POLITICA
[3]  
[Anonymous], ADM PROCESS DEMOCRAT
[4]  
BAILLARD C, 1997, THESIS ENST PARIS
[5]  
Berens J, 2000, INT C PATT RECOG, P206, DOI 10.1109/ICPR.2000.905304
[6]  
Bulow T, 1998, INT C PATT RECOG, P808, DOI 10.1109/ICPR.1998.711271
[7]   Color image segmentation: advances and prospects [J].
Cheng, HD ;
Jiang, XH ;
Sun, Y ;
Wang, JL .
PATTERN RECOGNITION, 2001, 34 (12) :2259-2281
[8]   DIGITAL COLOR IMAGE-PROCESSING WITHIN THE FRAMEWORK OF A HUMAN VISUAL MODEL [J].
FAUGERAS, OD .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1979, 27 (04) :380-393
[9]  
GARNIER A, 2002, MODELISATION TEXTURE, V930
[10]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741