The role of FoxO in the regulation of metabolism

被引:437
作者
Gross, D. N. [1 ,2 ]
van den Heuvel, A. P. J. [1 ,2 ]
Birnbaum, M. J. [1 ,2 ]
机构
[1] Univ Penn, Sch Med, Inst Diabet Obes & Metab, Cox Inst, Philadelphia, PA 19104 USA
[2] Univ Penn, Howard Hughes Med Inst, Philadelphia, PA 19104 USA
关键词
FoxO; liver; adipocyte; beta cell; skeletal muscle; metabolism;
D O I
10.1038/onc.2008.25
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Forkhead proteins, and FoxO1 in particular, play a significant role in regulating whole body energy metabolism. Glucose homeostasis is achieved by adjusting endogenous glucose production as well as glucose uptake by peripheral tissues in response to insulin. In the fasted state, the liver is primarily responsible for maintaining glucose levels, with FoxO1 playing a key role in promoting the expression of gluconeogenic enzymes. Following feeding, pancreatic beta cells secrete insulin, which promotes the uptake of glucose by peripheral tissues including skeletal muscle and adipose tissue, and can in part suppress gluconeogenic enzyme expression in the liver. In addition to directly regulating metabolism, FoxO1 also plays a role in the formation of both adipose tissue and skeletal muscle, two major organs that are critical for maintaining energy homeostasis. The importance of FoxO1 in energy homeostasis is particularly striking under conditions of metabolic dysfunction or insulin resistance. In obese or diabetic states, FoxO1-dependent gene expression promotes some of the deleterious characteristics associated with these conditions, including hyperglycemia and glucose intolerance. In addition, the increase in pancreatic beta cell mass that normally occurs in response to a rise in insulin demand is blunted by nuclear FoxO1 expression. However, under these same pathophysiological conditions, FoxO1 expression may help drive the expression of genes involved in combating oxidative stress, thereby preserving cellular function. FoxO1 may also be involved in promoting the switch from carbohydrate to fatty acid as the major energy source during starvation.
引用
收藏
页码:2320 / 2336
页数:17
相关论文
共 192 条
[1]   TARGETED INACTIVATION OF THE INSULIN-RECEPTOR GENE IN MOUSE 3T3-L1 FIBROBLASTS VIA HOMOLOGOUS RECOMBINATION [J].
ACCILI, D ;
TAYLOR, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (11) :4708-4712
[2]   FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J].
Accili, D ;
Arden, KC .
CELL, 2004, 117 (04) :421-426
[3]   Early neonatal death in mice homozygous for a null allele of the insulin receptor gene [J].
Accili, D ;
Drago, J ;
Lee, EJ ;
Johnson, MD ;
Cool, MH ;
Salvatore, P ;
Asico, LD ;
Jose, PA ;
Taylor, SI ;
Westphal, H .
NATURE GENETICS, 1996, 12 (01) :106-109
[4]   Adipose tissue as an endocrine organ [J].
Ahima, RS ;
Flier, JS .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2000, 11 (08) :327-332
[5]   Metabolic syndrome - a new world-wide definition. A consensus statement from the international diabetes federation [J].
Alberti, KGMM ;
Zimmet, P ;
Shaw, J .
DIABETIC MEDICINE, 2006, 23 (05) :469-480
[6]   Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors [J].
Allen, David L. ;
Unterman, Terry G. .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2007, 292 (01) :C188-C199
[7]   Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice [J].
Altomonte, J ;
Richter, A ;
Harbaran, S ;
Suriawinata, J ;
Nakae, J ;
Thung, SN ;
Meseck, M ;
Accili, D ;
Dong, HJ .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 285 (04) :E718-E728
[8]   Foxo1 mediates insulin action on apoC-III and triglyceride metabolism [J].
Altomonte, J ;
Cong, L ;
Harbaran, S ;
Richter, A ;
Xu, J ;
Meseck, M ;
Dong, HJH .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 114 (10) :1493-1503
[9]   ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE [J].
ARAKI, E ;
LIPES, MA ;
PATTI, ME ;
BRUNING, JC ;
HAAG, B ;
JOHNSON, RS ;
KAHN, CR .
NATURE, 1994, 372 (6502) :186-190
[10]   FOXO1 represses peroxisome proliferator-activated receptor-γ1 and -γ2 gene promoters in primary adipocytes -: A novel paradigm to increase insulin sensitivity [J].
Armoni, Michal ;
Harel, Chava ;
Karni, Shiri ;
Chen, Hui ;
Bar-Yoseph, Fabiana ;
Ver, Marel R. ;
Quon, Michael J. ;
Karnieli, Eddy .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (29) :19881-19891