Theory of continuum percolation .1. General formalism

被引:19
作者
Drory, A
机构
[1] Dipartimento di Fisica, Universitá La Sapienza, Roma, 00187
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 06期
关键词
D O I
10.1103/PhysRevE.54.5992
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The theoretical basis of continuum percolation has changed greatly since its beginning as little more than an analog with lattice systems. Nevertheless, there is yet no comprehensive theory of this field, A basis for such a theory is provided hen with the introduction of the Potts fluid, a system of interacting s-state spins which are free to move in the continuum. In the s-->1 limit, the Potts magnetization, susceptibility, and correlation functions are directly related to the percolation probability, the mean cluster size, and the pair connectedness, respectively. Through the Hamiltonian formulation of the Potts fluid standard methods of statistical mechanics can therefore be used in the continuum percolation problem.
引用
收藏
页码:5992 / 6002
页数:11
相关论文
共 23 条
[1]   SYSTEMATIC DERIVATION OF PERCOLATION THRESHOLDS IN CONTINUUM-SYSTEMS [J].
ALON, U ;
DRORY, A ;
BALBERG, I .
PHYSICAL REVIEW A, 1990, 42 (08) :4634-4638
[2]   EXCLUDED VOLUME AND ITS RELATION TO THE ONSET OF PERCOLATION [J].
BALBERG, I ;
ANDERSON, CH ;
ALEXANDER, S ;
WAGNER, N .
PHYSICAL REVIEW B, 1984, 30 (07) :3933-3943
[3]   COMPUTER STUDY OF THE PERCOLATION-THRESHOLD IN A TWO-DIMENSIONAL ANISOTROPIC SYSTEM OF CONDUCTING STICKS [J].
BALBERG, I ;
BINENBAUM, N .
PHYSICAL REVIEW B, 1983, 28 (07) :3799-3812
[4]   PERCOLATION THRESHOLDS IN THE 3-DIMENSIONAL STICKS SYSTEM [J].
BALBERG, I ;
BINENBAUM, N ;
WAGNER, N .
PHYSICAL REVIEW LETTERS, 1984, 52 (17) :1465-1468
[5]   RECENT DEVELOPMENTS IN CONTINUUM PERCOLATION [J].
BALBERG, I .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06) :991-1003
[6]  
Binney J. J., 1992, The theory of critical phenomena, an introduction to the Renormalization Group
[7]   CONTINUUM PERCOLATION OF RODS [J].
BUG, ALR ;
SAFRAN, SA ;
WEBMAN, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1412-1415
[8]   DO INTERACTIONS RAISE OR LOWER A PERCOLATION-THRESHOLD [J].
BUG, ALR ;
SAFRAN, SA ;
GREST, GS ;
WEBMAN, I .
PHYSICAL REVIEW LETTERS, 1985, 55 (18) :1896-1899
[9]   CONTINUUM PERCOLATION OF PERMEABLE OBJECTS [J].
BUG, ALR ;
SAFRAN, SA ;
WEBMAN, I .
PHYSICAL REVIEW B, 1986, 33 (07) :4716-4724
[10]   DISTRIBUTION OF PHYSICAL CLUSTERS [J].
CONIGLIO, A ;
DEANGELIS, U ;
FORLANI, A ;
LAURO, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (02) :219-228