Distinct histidine residues control the acid-induced activation and inhibition of the cloned KATP channel

被引:38
作者
Xu, HX [1 ]
Wu, JP [1 ]
Cui, NR [1 ]
Abdulkadir, L [1 ]
Wang, RP [1 ]
Mao, JZ [1 ]
Giwa, LR [1 ]
Chanchevalap, S [1 ]
Jiang, C [1 ]
机构
[1] Georgia State Univ, Dept Biol, Atlanta, GA 30302 USA
关键词
D O I
10.1074/jbc.M106595200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The modulation of K-ATP channels during acidosis has an impact on vascular tone, myocardial rhythmicity, insulin secretion, and neuronal excitability. Our previous studies have shown that the cloned Kir6.2 is activated with mild acidification but inhibited with high acidity. The activation relies on His-175, whereas the molecular basis for the inhibition remains unclear. To elucidate whether the His-175 is indeed the protonation site and what other structures are responsible for the pH-induced inhibition, we performed these studies. Our data showed that the His-175 is the only proton sensor whose protonation is required for the channel activation by acidic pH. In contrast, the channel inhibition at extremely low pH depended on several other histidine residues including His-186, His-193, and His-216. Thus, proton has both stimulatory and inhibitory effects on the Kir6.2 channels, which attribute to two sets of histidine residues in the C terminus.
引用
收藏
页码:38690 / 38696
页数:7
相关论文
共 34 条
[1]   NUCLEOTIDE DIPHOSPHATES ACTIVATE THE ATP-SENSITIVE POTASSIUM CHANNEL IN MOUSE SKELETAL-MUSCLE [J].
ALLARD, B ;
LAZDUNSKI, M .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1992, 422 (02) :185-192
[2]   ACTIVATION OF ATP-DEPENDENT K+ CHANNELS BY METABOLIC POISONING IN ADULT-MOUSE SKELETAL-MUSCLE - ROLE OF INTRACELLULAR MG2+ AND PH [J].
ALLARD, B ;
LAZDUNSKI, M ;
ROUGIER, O .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 485 (02) :283-296
[3]   Effects of intravesicular H+ and extracellular H+ and Zn2+ on insulin secretion in pancreatic beta cells [J].
Aspinwall, CA ;
Brooks, SA ;
Kennedy, RT ;
Lakey, JRT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31308-31314
[4]   PIP2 and PIP as determinants for ATP inhibition of KATP channels [J].
Baukrowitz, T ;
Schulte, U ;
Oliver, D ;
Herlitze, S ;
Krauter, T ;
Tucker, SJ ;
Ruppersberg, JP ;
Fakler, B .
SCIENCE, 1998, 282 (5391) :1141-1144
[5]   INTRACELLULAR ATP DIRECTLY BLOCKS K+ CHANNELS IN PANCREATIC B-CELLS [J].
COOK, DL ;
HALES, CN .
NATURE, 1984, 311 (5983) :271-273
[6]   IDENTIFICATION AND MOLECULAR LOCALIZATION OF A PH-SENSING DOMAIN FOR THE INWARD RECTIFIER POTASSIUM CHANNEL HIR [J].
COULTER, KL ;
PERIER, F ;
RADEKE, CM ;
VANDENBERG, CA .
NEURON, 1995, 15 (05) :1157-1168
[7]   THE EFFECT OF INTRACELLULAR PH ON ATP-DEPENDENT POTASSIUM CHANNELS OF FROG SKELETAL-MUSCLE [J].
DAVIES, NW ;
STANDEN, NB ;
STANFIELD, PR .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 445 :549-568
[8]   MODULATION OF ATP-SENSITIVE K+ CHANNELS IN SKELETAL-MUSCLE BY INTRACELLULAR PROTONS [J].
DAVIES, NW .
NATURE, 1990, 343 (6256) :375-377
[9]  
Dost R, 2000, EPILEPSY RES, V38, P53
[10]   Anionic phospholipids activate ATP-sensitive potassium channels [J].
Fan, Z ;
Makielski, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (09) :5388-5395