Magnetic nanoparticles in MR imaging and drug delivery

被引:2119
作者
Sun, Conroy [1 ]
Lee, Jerry S. H. [2 ]
Zhang, Miqin [1 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
[2] NCI, Off Technol & Ind Relat, Bethesda, MD 20892 USA
关键词
magnetic nanoparticle; MRI; contrast agent; drug delivery; targeting; DNA; siRNA; peptide; ligand; cancer; biodistribution;
D O I
10.1016/j.addr.2008.03.018
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Magnetic nanoparticles (MNPs) possess unique magnetic properties and the ability to function at the cellular and molecular level of biological interactions making them an attractive platform as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. Recent advances in nanotechnology have improved the ability to specifically tailor the features and properties of MNPs for these biomedical applications. To better address specific clinical needs, MNPs with higher magnetic moments, non-fouling surfaces, and increased functionalities are now being developed for applications in the detection, diagnosis, and treatment of malignant tumors, cardiovascular disease, and neurological disease. Through the incorporation of highly specific targeting agents and other functional ligands, such as fluorophores and permeation enhancers, the applicability and efficacy of these MNPs have greatly increased. This review provides a background on applications of MNPs as MR imaging contrast agents and as carriers for drug delivery and an overview of the recent developments in this area of research. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1252 / 1265
页数:14
相关论文
共 201 条
[1]  
Alexiou C, 2000, CANCER RES, V60, P6641
[2]   Targeting cancer cells: magnetic nanoparticles as drug carriers [J].
Alexiou, Christoph ;
Schmid, Roswitha J. ;
Jurgons, Roland ;
Kremer, Marcus ;
Wanner, Gerhard ;
Bergemann, Christian ;
Huenges, Ernst ;
Nawroth, Thomas ;
Arnold, Wolfgang ;
Parak, Fritz G. .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2006, 35 (05) :446-450
[3]  
Artemov D, 2003, CANCER RES, V63, P2723
[4]   MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles [J].
Artemov, D ;
Mori, N ;
Okollie, B ;
Bhujwalla, ZM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (03) :403-408
[5]  
ASLAM M, 1998, BIOCONJUGATION
[6]   High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles [J].
Bai, JM ;
Wang, JP .
APPLIED PHYSICS LETTERS, 2005, 87 (15) :1-3
[7]   FORMATION OF MONOLAYER FILMS BY THE SPONTANEOUS ASSEMBLY OF ORGANIC THIOLS FROM SOLUTION ONTO GOLD [J].
BAIN, CD ;
TROUGHTON, EB ;
TAO, YT ;
EVALL, J ;
WHITESIDES, GM ;
NUZZO, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (01) :321-335
[8]   Synthesis and coating of cobalt ferrite nanoparticles: A first step toward the obtainment of new magnetic nanocarriers [J].
Baldi, Giovanni ;
Bonacchi, Daniele ;
Franchini, Mauro Comes ;
Gentili, Denis ;
Lorenzi, Giada ;
Ricci, Alfredo ;
Ravagli, Costanza .
LANGMUIR, 2007, 23 (07) :4026-4028
[9]   Endocytic mechanisms for targeted drug delivery [J].
Bareford, Lisa A. ;
Swaan, Peter W. .
ADVANCED DRUG DELIVERY REVIEWS, 2007, 59 (08) :748-758
[10]   Functionalisation of magnetic nanoparticles for applications in biomedicine [J].
Berry, CC ;
Curtis, ASG .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (13) :R198-R206