Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor Slug

被引:65
作者
Wang, Z.
Wade, P.
Mandell, K. J.
Akyildiz, A.
Parkos, C. A.
Mrsny, R. J.
Nusrat, A.
机构
[1] Emory Univ, Dept Pathol, Epithelial Pathobiol Res Unit, Atlanta, GA 30322 USA
[2] Natl Inst Environm Hlth Sci, Res Triangle Pk, NC USA
[3] Unity Pharmaceut, Los Altos Hills, CA USA
关键词
TJ; occluding; Slug; Raf; 1;
D O I
10.1038/sj.onc.1209902
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although dysregulation of tight junction (TJ) proteins is observed in epithelial malignancy, their participation in epithelial transformation is poorly understood. Recently we demonstrated that expression of oncogenic Raf 1 in Pa4 epithelial cells disrupts TJs and induces an oncogenic phenotype by downregulating expression of the TJ protein, occludin. Here we report the mechanism by which Raf 1 regulates occludin expression. Raf 1 inhibited occludin transcription by repressing a minimal segment of the occludin promoter in concert with upregulation of the transcriptional repressor, Slug without influencing the well-documented transcriptional repressor, Snail. Overexpression of Slug in Pa4 cells recapitulated the effect of Raf 1 on occludin expression, and depletion of Slug by small interfering RNA abrogated the effect of Raf 1 on occludin. Finally, chromatin immunoprecipitation assays and site- directed mutagenesis demonstrated a direct interaction between Slug and an E-box within the minimal Raf 1-responsive segment of the occludin promoter. These findings support a role of Slug in mediating Raf 1-induced transcriptional repression of occludin and subsequent epithelial to mesenchymal transition.
引用
收藏
页码:1222 / 1230
页数:9
相关论文
共 37 条
[1]   Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues [J].
AndoAkatsuka, Y ;
Saitou, M ;
Hirase, T ;
Kishi, M ;
Sakakibara, A ;
Itoh, M ;
Yonemura, S ;
Furuse, M ;
Tsukita, S .
JOURNAL OF CELL BIOLOGY, 1996, 133 (01) :43-47
[2]   Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein [J].
Balda, MS ;
Whitney, JA ;
Flores, C ;
Gonzalez, S ;
Cereijido, M ;
Matter, K .
JOURNAL OF CELL BIOLOGY, 1996, 134 (04) :1031-1049
[3]   Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells [J].
Barberà, MJ ;
Puig, I ;
Domínguez, D ;
Julien-Grille, S ;
Guaita-Esteruelas, S ;
Peiró, S ;
Baulida, J ;
Francí, C ;
Dedhar, S ;
Larue, L ;
de Herreros, AG .
ONCOGENE, 2004, 23 (44) :7345-7354
[4]   The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells [J].
Batlle, E ;
Sancho, E ;
Franci, C ;
Domínguez, D ;
Monfar, M ;
Baulida, J ;
de Herreros, AG .
NATURE CELL BIOLOGY, 2000, 2 (02) :84-89
[5]  
BIRCHMEIER W, 1993, J CELL SCI, P159
[6]   SERUM-INDUCED, TPA-INDUCED, AND RAS-INDUCED EXPRESSION FROM AP-1/ETS-DRIVEN PROMOTERS REQUIRES RAF-1 KINASE [J].
BRUDER, JT ;
HEIDECKER, G ;
RAPP, UR .
GENES & DEVELOPMENT, 1992, 6 (04) :545-556
[7]  
BULKHOLM IK, 1998, J PATHOL, V185, P262
[8]   The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression [J].
Cano, A ;
Pérez-Moreno, MA ;
Rodrigo, I ;
Locascio, A ;
Blanco, MJ ;
del Barrio, MG ;
Portillo, F ;
Nieto, MA .
NATURE CELL BIOLOGY, 2000, 2 (02) :76-83
[9]   Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in Ras-transformed Madin-Darby canine kidney cells [J].
Chen, YH ;
Lu, Q ;
Schneeberger, EE ;
Goodenough, DA .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (03) :849-862
[10]   Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer [J].
Dhawan, P ;
Singh, AB ;
Deane, NG ;
No, Y ;
Shiou, SR ;
Schmidt, C ;
Neff, J ;
Washington, MK ;
Beauchamp, RD .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (07) :1765-1776