How Protein Stability and New Functions Trade Off

被引:443
作者
Tokuriki, Nobuhiko [1 ]
Stricher, Francois [2 ]
Serrano, Luis [2 ]
Tawfik, Dan S. [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
[2] CRG Ctr Regulac Genom, EMBL CRG Syst Biol Partnership Unit, Barcelona, Spain
关键词
D O I
10.1371/journal.pcbi.1000002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Numerous studies have noted that the evolution of new enzymatic specificities is accompanied by loss of the protein's thermodynamic stability (Delta Delta G), thus suggesting a tradeoff between the acquisition of new enzymatic functions and stability. However, since most mutations are destabilizing (Delta Delta G>0), one should ask how destabilizing mutations that confer new or altered enzymatic functions relative to all other mutations are. We applied Delta Delta G computations by FoldX to analyze the effects of 548 mutations that arose from the directed evolution of 22 different enzymes. The stability effects, location, and type of function-altering mutations were compared to Delta Delta G changes arising from all possible point mutations in the same enzymes. We found that mutations that modulate enzymatic functions are mostly destabilizing (average Delta Delta G = +0.9 kcal/mol), and are almost as destabilizing as the "average" mutation in these enzymes (+1.3 kcal/mol). Although their stability effects are not as dramatic as in key catalytic residues, mutations that modify the substrate binding pockets, and thus mediate new enzymatic specificities, place a larger stability burden than surface mutations that underline neutral, non- adaptive evolutionary changes. How are the destabilizing effects of functional mutations balanced to enable adaptation? Our analysis also indicated that many mutations that appear in directed evolution variants with no obvious role in the new function exert stabilizing effects that may compensate for the destabilizing effects of the crucial function-altering mutations. Thus, the evolution of new enzymatic activities, both in nature and in the laboratory, is dependent on the compensatory, stabilizing effect of apparently "silent" mutations in regions of the protein that are irrelevant to its function.
引用
收藏
页数:7
相关论文
共 59 条
[1]   The 'evolvability' of promiscuous protein functions [J].
Aharoni, A ;
Gaidukov, L ;
Khersonsky, O ;
Gould, SM ;
Roodveldt, C ;
Tawfik, DS .
NATURE GENETICS, 2005, 37 (01) :73-76
[2]   Directed evolution of mesophilic enzymes into their thermophilic counterparts [J].
Arnold, FH ;
Giver, L ;
Gershenson, A ;
Zhao, HM ;
Miyazaki, K .
MOLECULAR STRATEGIES IN BIOLOGICAL EVOLUTION, 1999, 870 :400-403
[3]   Emerging principles of de novo catalyst design [J].
Baltzer, L ;
Nilsson, J .
CURRENT OPINION IN BIOTECHNOLOGY, 2001, 12 (04) :355-360
[4]   Analysis of catalytic residues in enzyme active sites [J].
Bartlett, GJ ;
Porter, CT ;
Borkakoti, N ;
Thornton, JM .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 324 (01) :105-121
[5]   Structural bases of stability-function tradeoffs in enzymes [J].
Beadle, BM ;
Shoichet, BK .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 321 (02) :285-296
[6]   Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein [J].
Bershtein, Shimon ;
Segal, Michal ;
Bekerman, Roy ;
Tokuriki, Nobuhiko ;
Tawfik, Dan S. .
NATURE, 2006, 444 (7121) :929-932
[7]   Relative tolerance of mesostable and thermostable protein homologs to extensive mutation [J].
Besenmatter, Werner ;
Kast, Peter ;
Hilvert, Donald .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 66 (02) :500-506
[8]   Protein stability promotes evolvability [J].
Bloom, JD ;
Labthavikul, ST ;
Otey, CR ;
Arnold, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5869-5874
[9]   Evolving strategies for enzyme engineering [J].
Bloom, JD ;
Meyer, MM ;
Meinhold, P ;
Otey, CR ;
MacMillan, D ;
Arnold, FH .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (04) :447-452
[10]   Thermodynamic prediction of protein neutrality [J].
Bloom, JD ;
Silberg, JJ ;
Wilke, CO ;
Drummond, DA ;
Adami, C ;
Arnold, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (03) :606-611