Non-framework cation migration and irreversible pressure-induced hydration in a zeolite

被引:126
作者
Lee, Y
Vogt, T [1 ]
Hriljac, JA
Parise, JB
Hanson, JC
Kim, SJ
机构
[1] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA
[2] Univ Birmingham, Sch Chem Sci, Birmingham B15 2TT, W Midlands, England
[3] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
[4] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA
[5] Korea Inst Sci & Technol, Nanomat Res Ctr, Seoul 130650, South Korea
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature01265
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Zeolites crystallize in a variety of three-dimensional structures in which oxygen atoms are shared between tetrahedra containing silicon and/or aluminium, thus yielding negatively charged tetrahedral frameworks that enclose cavities and pores of molecular dimensions occupied by charge-balancing metal cations and water molecules(1). Cation migration in the pores and changes in water content associated with concomitant relaxation of the framework have been observed in numerous variable-temperature studies(2-5), whereas the effects of hydrostatic pressure on the structure and properties of zeolites are less well explored(6-8). The zeolite sodium aluminosilicate natrolite was recently shown to undergo a volume expansion at pressures above 1.2 GPa as a result of reversible pressure-induced hydration(9); in contrast, a synthetic analogue, potassium gallosilicate natrolite, exhibited irreversible pressure-induced hydration with retention of the high-pressure phase at ambient conditions(10). Here we report the structure of the high-pressure recovered phase and contrast it with the high-pressure phase of the sodium aluminosilicate natrolite. Our findings show that the irreversible hydration behaviour is associated with a pronounced rearrangement of the non-framework metal ions, thus emphasizing that they can clearly have an important role in mediating the overall properties of zeolites.
引用
收藏
页码:485 / 489
页数:6
相关论文
共 15 条
[1]  
Baur WH, 1996, NEUES JB MINER MONAT, P171
[2]   STRUCTURAL TRANSFORMATIONS IN NATROLITE AND EDINGTONITE [J].
BELITSKY, IA ;
FURSENKO, BA ;
GABUDA, SP ;
KHOLDEEV, OV ;
SERYOTKIN, YV .
PHYSICS AND CHEMISTRY OF MINERALS, 1992, 18 (08) :497-505
[3]  
Breck D.W., 1984, Zeolite molecular sieves
[4]  
Hazen R.M., 1982, Comparative Crystal Chemistry, VVolume 231
[6]   A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules [J].
Kuznicki, SM ;
Bell, VA ;
Nair, S ;
Hillhouse, HW ;
Jacubinas, RM ;
Braunbarth, CM ;
Toby, BH ;
Tsapatsis, M .
NATURE, 2001, 412 (6848) :720-724
[7]   Pressure-induced volume expansion of zeolites in the natrolite family [J].
Lee, Y ;
Vogt, T ;
Hriljac, JA ;
Parise, JB ;
Artioli, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (19) :5466-5475
[8]   First structural investigation of a super-hydrated zeolite [J].
Lee, Y ;
Hriljac, JA ;
Vogt, T ;
Parise, JB ;
Artioli, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (50) :12732-12733
[9]   New insight into cation relocations within the pores of zeolite Rho: In situ synchrotron X-ray and neutron powder diffraction studies of Pb- and Cd-exchanged Rho [J].
Lee, Y ;
Reisner, BA ;
Hanson, JC ;
Jones, GA ;
Parise, JB ;
Corbin, DR ;
Toby, BH ;
Freitag, A ;
Larese, JZ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (30) :7188-7199
[10]   Phase transition of zeolite RHO at high-pressure [J].
Lee, Y ;
Hriljac, JA ;
Vogt, T ;
Parise, JB ;
Edmondson, MJ ;
Anderson, PA ;
Corbin, DR ;
Nagai, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (34) :8418-8419