Plant resistance towards insect herbivores: a dynamic interaction

被引:452
作者
Gatehouse, JA [1 ]
机构
[1] Univ Durham, Dept Biol Sci, Durham DH1 3LE, England
关键词
D O I
10.1046/j.1469-8137.2002.00519.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant defences against insect herbivores can be divided into 'static' or constitutive defences, and 'active' or induced defences, although the insecticidal compounds or proteins involved are often the same. induced defences have aspects common to all plants, whereas the accumulation of constitutive defences is species-specific. Insect herbivores activate induced defences both locally and systemically by signalling pathways involving systemin, jasmonate, oligogalacturonic acid and hydrogen peroxide. Plants also respond to insect attack by producing volatiles, which can be used to deter herbivores, to communicate between parts of the plant, or between plants, to induce defence responses. Plant volatiles are also an important component in indirect defence. Herbivorous insects have adapted to tolerate plant defences, and such adaptations can also be constitutive or induced. Insects whose plant host range is limited are more likely to show constitutive adaptation to the insecticidal compounds they will encounter, whereas insects which feed on a wide range of plant species often use induced adaptations to overcome plant defences. Both plant defence and insect adaptation involve a metabolic cost, and in a natural system most plant-insect interactions involving herbivory reach a 'stand-off' where both host and herbivore survive but develop suboptimally. (C) New Phytologist (2002).
引用
收藏
页码:145 / 169
页数:25
相关论文
共 220 条
[1]   An elicitor of plant volatiles from beet armyworm oral secretion [J].
Alborn, HT ;
Turlings, TCJ ;
Jones, TH ;
Stenhagen, G ;
Loughrin, JH ;
Tumlinson, JH .
SCIENCE, 1997, 276 (5314) :945-949
[2]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[3]   Gene responses in bean leaves induced by herbivory and by herbivore-induced volatiles [J].
Arimura, G ;
Tashiro, K ;
Kuhara, S ;
Nishioka, T ;
Ozawa, R ;
Takabayashi, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 277 (02) :305-310
[4]   Herbivory-induced volatiles elicit defence genes in lima bean leaves [J].
Arimura, G ;
Ozawa, R ;
Shimoda, T ;
Nishioka, T ;
Boland, W ;
Takabayashi, J .
NATURE, 2000, 406 (6795) :512-515
[5]   Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants [J].
Arimura, G ;
Ozawa, R ;
Nishioka, T ;
Boland, W ;
Koch, T ;
Kühnemann, F ;
Takabayashi, J .
PLANT JOURNAL, 2002, 29 (01) :87-98
[6]   Methyl jasmonate exposure induces insect resistance in cabbage and tobacco [J].
Avdiushko, SA ;
Brown, GC ;
Dahlman, DL ;
Hildebrand, DF .
ENVIRONMENTAL ENTOMOLOGY, 1997, 26 (03) :642-654
[7]   SWORDS INTO PLOWSHARES - NICOTIANA-SYLVESTRIS DOES NOT USE NICOTINE AS A NITROGEN-SOURCE UNDER NITROGEN-LIMITED GROWTH [J].
BALDWIN, IT ;
OHNMEISS, TE .
OECOLOGIA, 1994, 98 (3-4) :385-392
[8]  
Baldwin IT, 1996, ENTOMOL EXP APPL, V80, P213, DOI 10.1007/BF00194760
[9]   Merging molecular and ecological approaches in plant-insect interactions [J].
Baldwin, IT ;
Halitschke, R ;
Kessler, A ;
Schittko, U .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (04) :351-358
[10]   Jasmonate-induced responses are costly but benefit plants under attack in native populations [J].
Baldwin, IT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :8113-8118