The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere

被引:206
作者
Phan, AT
Guéron, M [1 ]
Leroy, JL
机构
[1] Ecole Polytech, Grp Biophys, F-91128 Palaiseau, France
[2] CNRS, UMR 7643, F-91128 Palaiseau, France
关键词
DNA solution structure; i-motif; interacting loops; loop motion; NMR; telomere;
D O I
10.1006/jmbi.2000.3613
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present the solution structure of d (CCCTA(2)CCCTA(2)CCCTA(2)CCCT), a fragment of the vertebrate telomere which folds intramolecularly. The four cytidine stretches form an i-motif which includes six intercalated C.C+ pairs and terminates with the cytidines at the 5' extremity of each stretch. Above, the second TA(2) linker loops across one of the narrow grooves, while at the bottom, the first and third linkers loop across the wide grooves. At 30 degrees C, the spectra of the first and third linkers are quasi-degenerate. Severe broadening at lower temperature indicates that this results from motional averaging between at least two structures of each bottom loop, and makes it impossible to solve the configuration of the bottom loops directly, in contrast to the rest of the structure. We therefore turned to the modified sequence d(CCCTA(2)5mCCC-TA(2)CCCUA(2)CCCT) in which the two base substitutions (underlined) break the quasi-symmetry between linkers 1 and 3. The three loops follow approximately the hairpin "second pattern" of Hilbers. In the first loop, T4 is in the syn orientation, whereas its analog in the third loop, U16, oriented anti, is in a central location, where it interacts with bases of both loops, thus contributing to their tight association. The only motion is a syn/anti flip of A18 in the third loop. Returning to the telomere fragment, we show that each of the bottom loops switches between the structures identified in the first and third loops of the modified structure. The motions are concerted, and the resulting configurations of the bottom loop cluster present a bulge to either right (T4 syn) or left (T16 syn). (C) 2000 Academic Press.
引用
收藏
页码:123 / 144
页数:22
相关论文
共 56 条
[1]   HUMAN TELOMERIC C-STRAND TETRAPLEXES [J].
AHMED, S ;
KINTANAR, A ;
HENDERSON, E .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (02) :83-88
[2]   The SV40 large T-antigen helicase can unwind four stranded DNA structures linked by G-quartets [J].
Baran, N ;
Pucshansky, L ;
Marco, Y ;
Benjamin, S ;
Manor, H .
NUCLEIC ACIDS RESEARCH, 1997, 25 (02) :297-303
[3]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[4]   H-1 AND C-13 ASSIGNMENTS FROM SENSITIVITY-ENHANCED DETECTION OF HETERONUCLEAR MULTIPLE-BOND CONNECTIVITY BY 2D MULTIPLE QUANTUM NMR [J].
BAX, A ;
SUMMERS, MF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (08) :2093-2094
[5]   NATURAL ABUNDANCE N-15 NMR BY ENHANCED HETERONUCLEAR SPECTROSCOPY [J].
BODENHAUSEN, G ;
RUBEN, DJ .
CHEMICAL PHYSICS LETTERS, 1980, 69 (01) :185-189
[6]  
BRUNGER AT, 1990, XPLOR VERSION 3 1 SY
[7]   Intercalated cytosine motif and novel adenine clusters in the crystal structure of the Tetrahymena telomere [J].
Cai, L ;
Chen, LQ ;
Raghavan, S ;
Ratliff, R ;
Moyzis, R ;
Rich, A .
NUCLEIC ACIDS RESEARCH, 1998, 26 (20) :4696-4705
[8]   Cytosine-rich strands of the insulin minisatellite adopt hairpins with intercalated cytosine(+)center dot cytosine pairs [J].
Catasti, P ;
Chen, X ;
Deaven, LL ;
Moyzis, RK ;
Bradbury, EM ;
Gupta, G .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (03) :369-382
[9]   CRYSTAL-STRUCTURE OF A 4-STRANDED INTERCALATED DNA - D(C-4) [J].
CHEN, LQ ;
CAI, L ;
ZHANG, XH ;
RICH, A .
BIOCHEMISTRY, 1994, 33 (46) :13540-13546
[10]   STUDIES OF CHEMICAL EXCHANGE BY NUCLEAR MAGNETIC RELAXATION IN ROTATING FRAME [J].
DEVERELL, C ;
MORGAN, RE ;
STRANGE, JH .
MOLECULAR PHYSICS, 1970, 18 (04) :553-&