Structure prediction for CASP8 with all-atom refinement using Rosetta

被引:363
作者
Raman, Srivatsan [1 ]
Vernon, Robert [1 ]
Thompson, James [2 ]
Tyka, Michael [1 ]
Sadreyev, Ruslan [3 ]
Pei, Jimin [3 ]
Kim, David [1 ]
Kellogg, Elizabeth [1 ]
DiMaio, Frank [1 ]
Lange, Oliver [1 ]
Kinch, Lisa [3 ]
Sheffler, Will [2 ]
Kim, Bong-Hyun [4 ]
Das, Rhiju [1 ]
Grishin, Nick V. [3 ,4 ]
Baker, David [1 ,2 ,3 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[3] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
[4] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
关键词
rosetta; protein structure prediction; protein structure refinement; comparative modeling; homology modeling; ab initio prediction; PROTEIN-STRUCTURE PREDICTION; INFORMATION; ALIGNMENTS; GENERATION; COMPASS; TOOL;
D O I
10.1002/prot.22540
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe predictions made using the Rosetta structure prediction methodology for the Eighth Critical Assessment of Techniques for Protein Structure Prediction. Aggressive sampling and all-atom refinement were carried out for nearly all targets. A combination of alignment methodologies was used to generate starting models from a range of templates, and the models were then subjected to Rosetta all atom refinement. For the 64 domains with readily identified templates' the best submitted model was better than the best alignment to the best template in the Protein Data Bank for 24 cases, and improved over the best starting model for 43 cases. For 13 targets where only very distant sequence relationships to proteins of known structure were detected, models were generated using the Rosetta de novo structure prediction methodology followed by all-atom refinement; in several cases the submitted models were better than those based on the available templates. Of the 12 refinement challenges, the best submitted model improved on the starting model in seven cases. These improvements over the starting template-based models and refinement tests demonstrate the power of Rosetta structure refinement in improving model accuracy.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 34 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   KINETICS OF FORMATION OF NATIVE RIBONUCLEASE DURING OXIDATION OF REDUCED POLYPEPTIDE CHAIN [J].
ANFINSEN, CB ;
HABER, E ;
SELA, M ;
WHITE, FH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1961, 47 (09) :1309-+
[4]   A PROTEIN-FOLDING REACTION UNDER KINETIC CONTROL [J].
BAKER, D ;
SOHL, JL ;
AGARD, DA .
NATURE, 1992, 356 (6366) :263-265
[5]   Contact order and ab initio protein structure prediction [J].
Bonneau, R ;
Ruczinski, I ;
Tsai, J ;
Baker, D .
PROTEIN SCIENCE, 2002, 11 (08) :1937-1944
[6]   Toward high-resolution de novo structure prediction for small proteins [J].
Bradley, P ;
Misura, KMS ;
Baker, D .
SCIENCE, 2005, 309 (5742) :1868-1871
[7]   Free modeling with Rosetta in CASP6 [J].
Bradley, P ;
Malmström, L ;
Qian, B ;
Schonbrun, J ;
Chivian, D ;
Kim, DE ;
Meiler, K ;
Misura, KMS ;
Baker, D .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 :128-134
[8]   Improved beta-protein structure prediction by multilevel optimization of NonLocal strand pairings and local backbone conformation [J].
Bradley, Philip ;
Baker, David .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 65 (04) :922-929
[9]   Cyclic coordinate descent: A robotics algorithm for protein loop closure [J].
Canutescu, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (05) :963-972
[10]   Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection [J].
Chivian, Dylan ;
Baker, David .
NUCLEIC ACIDS RESEARCH, 2006, 34 (17)