Anatomy, photochemical activity, and DNA polymorphism in leaves of dwarf tomato irradiated with X-rays

被引:14
作者
Arena, C. [1 ,2 ]
Turano, M. [1 ]
Mele, B. Hay [3 ]
Cataletto, P. R. [1 ]
Furia, M. [1 ]
Pugliese, M. [4 ]
De Micco, V. [3 ]
机构
[1] Univ Naples Federico II, Dept Biol, I-80126 Naples, Italy
[2] Natl Res Council Italy, Inst Sustainable Plant Protect, I-50019 Sesto Fiorentino, Italy
[3] Univ Naples Federico II, Dept Agr Sci, I-80055 Portici, Italy
[4] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy
关键词
chlorophyll content; leaf development; photosystem; 2; RAPD; IONIZING-RADIATION; PLANT; GROWTH; PIGMENTS; TRAITS; CARBON; GAMMA; IONS; RAPD;
D O I
10.1007/s10535-016-0668-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The response of higher plants to ionising radiation depends on factors related to both radiation properties and plant features including species, cultivar, age, and structural complexity of the target organ. Adult plants of dwarf tomato were irradiated with different doses of X-rays to investigate possible variations in leaf morpho-anatomical traits, photosynthetic efficiency, and genomic DNA. In order to assess if and how responses depend on leaf developmental stage, we analysed two types of leaves; nearly mature leaves (L1) and actively developing leaves (L2), whose lamina size corresponded to 70 and 25 %, respectively, of the lamina size of the fully expanded leaves. The results show that the X-rays prevented full lamina expansion of the L2 leaves at all doses and induced early death of tissue of plants irradiated with doses higher than 20 Gy. Most anatomical modifications were not clearly dose-dependent and the radiation-induced increase in phenolic compounds was irrespective of dose. At high doses of X-rays (50 and 100 Gy), photochemical efficiency decreased significantly in both leaf types, whereas total chlorophyll content significantly decreased only in the L2 leaves. The random amplification of polymorphic DNA data show that the X-rays induced mutagenic effects in the L2 leaves even at low doses despite the absence of severe phenotypic alterations. Genetic structure found in the population of samples corroborates the results of anatomical and eco-physiological analyses: the 20 Gy dose seems to mark the threshold dose above which genetic alterations, structural anomalies, and perturbations in the photosynthetic apparatus become significant, especially in the actively expanding leaves.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 39 条
[1]  
Al-Enezi NA, 2012, INT J AGRIC BIOL, V14, P329
[2]  
[Anonymous], BMC PLANT BIOL
[3]  
[Anonymous], SCI WORLD J, DOI DOI 10.1155/2014/428141
[4]   Space radiation effects on plant and mammalian cells [J].
Arena, C. ;
De Micco, V. ;
Macaeva, E. ;
Quintens, R. .
ACTA ASTRONAUTICA, 2014, 104 (01) :419-431
[5]   Growth alteration and leaf biochemical responses in Phaseolus vulgaris exposed to different doses of ionising radiation [J].
Arena, C. ;
De Micco, V. ;
De Maio, A. .
PLANT BIOLOGY, 2014, 16 :194-202
[6]   Response of Phaseolus vulgaris L. plants to low-let ionizing radiation: Growth and oxidative stress [J].
Arena, C. ;
De Micco, V. ;
Aronne, G. ;
Pugliese, M. ;
De Santo, A. Virzo ;
De Maio, A. .
ACTA ASTRONAUTICA, 2013, 91 :107-114
[7]   The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review [J].
Atienzar, Franck A. ;
Jha, Awadhesh N. .
MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2006, 613 (2-3) :76-102
[8]  
Bayonove J, 1984, Adv Space Res, V4, P97, DOI 10.1016/0273-1177(84)90230-8
[9]   Using RAPD and AFLP markers to distinguish individuals obtained by clonal selection of 'Arbequina' and 'Manzamila de Sevilla' olive [J].
Belaj, A ;
Rallo, L ;
Trujillo, I ;
Baldoni, L .
HORTSCIENCE, 2004, 39 (07) :1566-1570
[10]   Auxin-mediated lamina growth in tomato leaves is restricted by two parallel mechanisms [J].
Ben-Gera, Hadas ;
Dafna, Asaf ;
Alvarez, John Paul ;
Bar, Maya ;
Mauerer, Mareike ;
Ori, Naomi .
PLANT JOURNAL, 2016, 86 (06) :443-457