Slow phases of GABAA receptor desensitization:: structural determinants and possible relevance for synaptic function

被引:97
作者
Bianchi, MT
Macdonald, RL [1 ]
机构
[1] Univ Michigan, Neurosci Grad Program, Ann Arbor, MI 48104 USA
[2] Vanderbilt Univ, Dept Neurol, Nashville, TN 37212 USA
[3] Vanderbilt Univ, Dept Mol Physiol, Nashville, TN 37212 USA
[4] Vanderbilt Univ, Dept Biophys, Nashville, TN 37212 USA
[5] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37212 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2002年 / 544卷 / 01期
关键词
D O I
10.1113/jphysiol.2002.020255
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
GABA(A) receptor fast desensitization is thought to shape the time course of individual IPSCs. Although GABA(A) receptors also exhibit slower phases of desensitization, the possible role of slow desensitization in modifying synaptic function is poorly understood. In transiently transfected human embryonic kidney (HEK293T) cells, rat alpha1beta3delta and alpha1beta3gamma2L GABA(A) receptors showed distinct desensitization patterns during long (28 s) concentration jumps using a saturating (1 mm) GABA concentration. alpha1beta3gamma2L, receptors desensitized extensively (similar to90%), with four phases (tau(1) similar to20 ms, tau(2) similar to400 ms, tau(3) similar to2 s, tau(4) similar to10 s), while alpha1beta3delta receptors desensitized slowly and less extensively (similar to35 %), with one or two slow phases with time constants similar to tau(3) and tau(4) of alpha1beta3gamma2L receptors. To determine the structural basis of subunit-specific desensitization, delta-gamma2L chimera subunits were expressed with alpha1 and beta3 subunits. Replacing the entire N-terminus of the gamma2L subunit with delta subunit sequence did not alter the number of phases or the extent of desensitization. Although extension of delta subunit sequence into transmembrane domain 1 (TM1) abolished the fast and intermediate components of desensitization, the two slow phases still accounted for substantial current loss (similar to65 %). However, when delta subunit sequence was extended through TM2, the extent of desensitization was significantly decreased and indistinguishable from that of alpha1beta3delta receptors. The importance of TM2 sequence was confirmed by introducing gamma2 subunit TM2 residues into the delta subunit, which significantly increased the extent of desensitization, without introducing either the fast or intermediate desensitization phases. However, introducing delta subunit TM2 sequence into the gamma2L subunit had minimal effect on the rates or extent of desensitization. The results suggest that distinct delta subunit structures are responsible for its unique desensitization properties: lack of fast and intermediate desensitization and small contribution of the slow phases of desensitization. Finally, to investigate the possible role of slow desensitization in synaptic function, we used a pulse train protocol. We observed inhibition of peak current amplitude that depended on the frequency and duration of GABA pulses for receptors exhibiting extensive desensitization, whether fast phases were present or not. The minimally desensitizing alpha1beta3delta receptor exhibited negligible inhibition during pulse trains. Because receptors that desensitized without the fast and intermediate phases showed pulse train inhibition, we concluded that receptors can accumulate in slowly equilibrating desensitized states during repetitive receptor activation. These results may indicate a previously unrecognized role for the slow phases of desensitization for synaptic function under conditions of repeated GABA(A) receptor activation.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 49 条
[1]   IDENTIFICATION OF ACETYLCHOLINE-RECEPTOR CHANNEL-LINING RESIDUES IN THE ENTIRE M2 SEGMENT OF THE ALPHA-SUBUNIT [J].
AKABAS, MH ;
KAUFMANN, C ;
ARCHDEACON, P ;
KARLIN, A .
NEURON, 1994, 13 (04) :919-927
[2]   IDENTIFICATION OF ACETYLCHOLINE-RECEPTOR CHANNEL-LINING RESIDUES IN THE M1 SEGMENT OF THE ALPHA-SUBUNIT [J].
AKABAS, MH ;
KARLIN, A .
BIOCHEMISTRY, 1995, 34 (39) :12496-12500
[3]   CONTRIBUTION OF CHLORIDE SHIFTS TO THE FADE OF GAMMA-AMINOBUTYRIC ACID-GATED CURRENTS IN FROG DORSAL-ROOT GANGLION-CELLS [J].
AKAIKE, N ;
INOMATA, N ;
TOKUTOMI, N .
JOURNAL OF PHYSIOLOGY-LONDON, 1987, 391 :219-234
[4]  
ALGER BE, 1991, ANN NY ACAD SCI, V627, P249
[5]  
ANGELOTTI TP, 1993, J NEUROSCI, V13, P1418
[6]   Identification of amino acid residues in GluR1 responsible for ligand binding and desensitization [J].
Banke, TG ;
Greenwood, JR ;
Christensen, JK ;
Liljefors, T ;
Traynelis, SF ;
Schousboe, A ;
Pickering, DS .
JOURNAL OF NEUROSCIENCE, 2001, 21 (09) :3052-3062
[7]   Treating to target with statins [J].
Barter, PJ .
ATHEROSCLEROSIS SUPPLEMENTS, 2000, 1 (01) :21-25
[8]   Mutation of the 9′ leucine in the GABAA receptor γ2L subunit produces an apparent decrease in desensitization by stabilizing open states without altering desensitized states [J].
Bianchi, MT ;
Macdonald, RL .
NEUROPHARMACOLOGY, 2001, 41 (06) :737-744
[9]  
Bianchi MT, 2001, J NEUROSCI, V21, P1127
[10]   Agonist trapping by GABAA receptor channels [J].
Bianchi, MT ;
Macdonald, RL .
JOURNAL OF NEUROSCIENCE, 2001, 21 (23) :9083-9091