Combining PCA-based datasets without retraining of the basis vector set

被引:23
作者
Costache, Gabriel Nicolae [1 ]
Corcoran, Peter [2 ]
Puslecki, Pawel [2 ]
机构
[1] Tessera, Cliona, Galway, Ireland
[2] Natl Univ Ireland, Coll Engn & Informat, Galway, Ireland
关键词
Principal component analysis; Incremental PCA; Combining collections;
D O I
10.1016/j.patrec.2009.08.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method of combining multiple PCA datasets together with re-projecting the dataset into the new PCA space is presented which does not require preservation of the original datasets from which the PCA descriptors were derived. Practical applications based on face recognition are described where (i) multiple PCA datasets can be combined and (ii) an existing PCA dataset can be augmented with a new set of original data samples. Test results performed on a database of 560 facial regions indicate that this method yields practically identical results with the classical approach of retraining over the original dataset. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1441 / 1447
页数:7
相关论文
共 10 条
[1]  
Artac M, 2002, INT C PATT RECOG, P781, DOI 10.1109/ICPR.2002.1048133
[2]   UPDATING SINGULAR VALUE DECOMPOSITION [J].
BUNCH, JR ;
NIELSEN, CP .
NUMERISCHE MATHEMATIK, 1978, 31 (02) :111-129
[3]   An eigenspace update algorithm for image analysis [J].
Chandrasekaran, S ;
Manjunath, BS ;
Wang, YF ;
Winkeler, J ;
Zhang, H .
GRAPHICAL MODELS AND IMAGE PROCESSING, 1997, 59 (05) :321-332
[4]   Automated sorting of consumer image collections using face and peripheral region image classifiers [J].
Corcoran, P ;
Costache, G .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2005, 51 (03) :747-754
[5]  
CORCORAN P, 2006, C P GSPX 2006 SANT C
[6]  
GILL PE, 1974, MATH COMPUT, V28, P505, DOI 10.1090/S0025-5718-1974-0343558-6
[7]   Merging and splitting eigenspace models [J].
Hall, P ;
Marshall, D ;
Martin, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (09) :1042-1049
[8]  
HALL P, 1999, BRIT MACH VIS C, V2, P463
[9]   On incremental and robust subspace learning [J].
Li, YM .
PATTERN RECOGNITION, 2004, 37 (07) :1509-1518
[10]  
Perazzo Costa Fernando Guilherme, 2006, Ciencia Animal Brasileira, V7, P11