Confluent layered drawings

被引:23
作者
Eppstein, David [1 ]
Goodrich, Michael T. [1 ]
Meng, Jeremy Yu [1 ]
机构
[1] Univ Calif Irvine, Sch Informat & Comp Sci, Irvine, CA 92697 USA
关键词
graph drawing; confluent drawing; layered drawing; cross reduction;
D O I
10.1007/s00453-006-0159-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We combine the idea of confluent drawings with Sugiyama-style drawings in order to reduce the edge crossings in the resultant drawings. Furthermore, it is easier to understand the structures of graphs from the mixed-style drawings. The basic idea is to cover a layered graph by complete bipartite subgraphs (bicliques), then replace bicliques with tree-like structures. The biclique cover problem is reduced to a special edge-coloring problem and solved by heuristic coloring algorithms. Our method can be extended to obtain multi-depth confluent layered drawings.
引用
收藏
页码:439 / 452
页数:14
相关论文
共 29 条
[1]  
BARTH W, 2003, LECT NOTES COMPUTER, V2528, P130
[2]   NEW METHODS TO COLOR THE VERTICES OF A GRAPH [J].
BRELAZ, D .
COMMUNICATIONS OF THE ACM, 1979, 22 (04) :251-256
[3]  
Campers G., 1988, Operational Research '87. Proceedings of the Eleventh International Conference, P917
[4]   AUTOMATIC DISPLAY OF HIERARCHIZED GRAPHS FOR COMPUTER-AIDED DECISION-ANALYSIS [J].
CARPANO, MJ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1980, 10 (11) :705-715
[5]  
Dickerson M, 2004, LECT NOTES COMPUT SC, V2912, P1
[6]  
Eades P., 1990, Journal of Information Processing, V13, P424
[7]  
ELLSON J, GRAPHVIZ
[8]  
ESCHBACH T, 2003, LECT NOTES COMPUTER, V2528, P285
[9]   Bipartite dimensions and bipartite degrees of graphs [J].
Fishburn, PC ;
Hammer, PL .
DISCRETE MATHEMATICS, 1996, 160 (1-3) :127-148
[10]  
FORSTER M, 2003, LECT NOTES COMPUTER, V2528, P276